Cohomology of combinatorial species

Pedro Tamaroff Universidad de Buenos Aires

August 2017

- Study the category _kSp of combinatorial species with its monoidal structure given by the *Cauchy product*.
- Study its coalgebras, in particular the *exponential species* e: a coalgebra in _kSp is the same as an e-bicomodule.
- We get a functor

$$\mathbf{x}$$
 coalgebra in $_{\Bbbk}Sp \longmapsto H^{*}(\mathbf{x}) = Ext^{*}_{\mathbf{e} \cdot \mathbf{e}}(\mathbf{x}, \mathbf{e})$

which we want to understand as completely as possible.

Combinatorial species

Fix a commutative ring $\Bbbk.$ A combinatorial species over \Bbbk is a functor

$$\mathbf{x} : \mathsf{FinSet}^{\times} \longrightarrow {}_{\Bbbk}\mathsf{Mod}.$$

Such functors are the objects of a k-linear abelian category $_k$ Sp.

If \boldsymbol{x} and \boldsymbol{y} are species, their Cauchy product is such that

$$(\mathbf{x} \otimes \mathbf{y})(I) = \bigoplus_{S \sqcup T = I} \mathbf{x}(S) \otimes_{\Bbbk} \mathbf{y}(T)$$

Along with more data, this endows the category $_{\Bbbk}\mathsf{Sp}$ with a symmetric monoidal structure.

The upshot of a monoidal structure

Coalgebas, algebras and Hopf algebras in $_{\Bbbk}$ Sp codify useful and classical combinatorial operations of "restriction" and "gluing" of structures.

Example: if **P** is the species of posets, there is $\mu : \mathbf{P} \otimes \mathbf{P} \longrightarrow \mathbf{P}$ such that

$$\mu(p^1 \otimes p^2) = p^1 * p^2 \qquad (\text{ordinal sum})$$

Example: if **G** is the species graphs, there is $\Delta : \mathbf{G} \longrightarrow \mathbf{G} \otimes \mathbf{G}$ such that

$$\Delta(g) = \sum g_S \otimes g_T \qquad \text{(induced subgraphs)}$$

The exponential species

The exponential species $\mathbf{e} : \operatorname{Set}^{\times} \longrightarrow_{\Bbbk} \operatorname{Sp}$ is such that $\mathbf{e}(I) = \Bbbk \{e_I\}$ for each finite set *I*. It is a bialgebra, with

$$e_S e_T = e_{S \cup T}, \qquad \Delta(e_I) = \sum e_S \otimes e_T$$

The category of "linear" ${\bf e}\mbox{-bicomodules}$ is equivalent to that of "linear" coalgebras.

Cohomology

To each linear coalgebra \boldsymbol{x} in $_{\Bbbk}Sp$ we associate cohomology groups

$$H^*(\mathbf{x}) = \operatorname{Ext}^*_{\mathbf{e}-\mathbf{e}}(\mathbf{x}, \mathbf{e}).$$

We can compute $H^*(\mathbf{x})$ with a canonical complex that resolves \mathbf{e} by applying hom_{e-e}(\mathbf{x} ,?) to

$$\Omega \mathbf{e}: \mathbf{0} \longrightarrow \mathbf{e}^{\otimes 2} \longrightarrow \mathbf{e}^{\otimes 3} \longrightarrow \mathbf{e}^{\otimes 4} \longrightarrow \cdots$$

Problem: although theoretically useful, this complex is computationally ineffective.

Cohomology

To each linear coalgebra \boldsymbol{x} in $_{\Bbbk}Sp$ we associate cohomology groups

$$H^*(\mathbf{x}) = \mathsf{Ext}^*_{\mathbf{e}-\mathbf{e}}(\mathbf{x},\mathbf{e}).$$

We can compute $H^*(\mathbf{x})$ with a canonical complex that resolves \mathbf{e} by applying hom_{e-e}(\mathbf{x} ,?) to

$$\Omega {\bf e}: 0 \longrightarrow {\bf e}^{\otimes 2} \longrightarrow {\bf e}^{\otimes 3} \longrightarrow {\bf e}^{\otimes 4} \longrightarrow \cdots$$

Problem: although theoretically useful, this complex is computationally ineffective.

Concrete computations: linear orders

Let $L:\mathsf{Set}^\times\longrightarrow_{\Bbbk}\mathsf{Mod}$ be the species of linear orders. This is the free noncommutative algebra on one generator on cardinality 1.

Theorem

If k is a PID and if $\mathbb{Q} \subseteq \operatorname{Frac}(\mathbb{k})$, there is an algebra isomorphism $H^*(\mathbf{L}) \simeq \mathbb{k}[\xi, \eta]$ with $|\eta| = 1$ and $|\xi| = 2$.

In particular $H^n(\mathbf{L})$ is one dimensional for each $n \in \mathbb{N}_0$.

Concrete computations: simplicial complexes

We can associate to every finite simplicial complex K a left **e**-comodule \mathbf{x}_{K} .

TheoremIf k is a PID, there are isomorphisms $H^*(\mathbf{x}_K^t) \simeq H^*(K)^{[-1]}$ $H^*(\mathbf{x}_K^s) \simeq SR(K)$ where SR(K) is the graded Stanley-Reisner ring associated to K.

Example: if $K = \partial \Delta^2$, then

$$SR(K) = \Lambda[x, y, z]/(xyz)$$

The Coxeter complex and the braid arrangement

Key step: use the explicit description of the *S*-module structure of the cohomology groups of the Coxeter complexes of type *A*. Their complexes of simplicial chains appear naturally as the sequence

The combinatorial complex

We were able to abstract a general method from our computations.

Theorem I

Let **x** be an **e**-bicomodule. There is a cochain complex $CC^*(\mathbf{x})$ with

 $CC^n(\mathbf{x}) = \hom_{S_n}(\mathbf{x}(n), \Bbbk(n)^-)$

so that

```
H(CC^*(\mathbf{x})) \simeq H^*(\mathbf{x})
```

if $\mathbf{x}(n)$ is $\mathbb{k}[S_n]$ -projective for each $n \in \mathbb{N}_0$.

Moreover, if **x** is a coalgebra, *CC**(**x**) is a DGA algebra, and the isomorphism is one of DGA algebras.

The combinatorial complex

We were able to abstract a general method from our computations.

Theorem I

Let **x** be an **e**-bicomodule. There is a cochain complex $CC^*(\mathbf{x})$ with

$$CC^n(\mathbf{x}) = \hom_{S_n}(\mathbf{x}(n), \Bbbk(n)^-)$$

so that

$$H(CC^*(\mathbf{x})) \simeq H^*(\mathbf{x})$$

if $\mathbf{x}(n)$ is $\mathbb{k}[S_n]$ -projective for each $n \in \mathbb{N}_0$.

Moreover, if \mathbf{x} is a coalgebra, $CC^*(\mathbf{x})$ is a DGA algebra, and the isomorphism is one of DGA algebras.

Results

With the combinatorial complex we were able to

- Give an alternative description of $H^*(\mathbf{x})$.
- **2** Provide a computationally simple formula for the product in $H^*(\mathbf{x})$.
- Oeduce structural results:
 - a Künneth formula,
 - graded commutativity for commutative coalgebras,
 - vanishing of cohomology groups

Example:

- Theorem I gives that $CC^n(\mathsf{L}) \simeq \Bbbk$ for each $n \in \mathbb{N}_0$,
- As **L** es commutative, by Theorem II we have d = 0.
- Thus $H^n(\mathbf{L}) \simeq \mathbb{k}$ for each $n \in \mathbb{N}_0$, which recovers our computation.

More generally: if $S_{\mathbf{x}} = \mathbf{e} \circ \mathbf{x}$ is the free commutative coalgebra on a positive species \mathbf{x} , d = 0 and the combinatorial complex *is* the cohomology algebra of $S_{\mathbf{x}}$.

The differential

Theorem II

If k is a field of characteristic zero, the differential d of $CC^*(\mathbf{x})$ is such that, for each $f \in CC^n(\mathbf{x})$ and $z \in \mathbf{x}(n+1)$,

$$d(f)(z) = \sum_{i=1}^{n+1} (-1)^{i-1} \left(f(z'_i) - f(z''_i) \right).$$

In particular, d = 0 if **x** is a cosymmetric bicomodule.

Some examples

Graphs: we can endow the species of graphs G with a non-commutative comultiplication. With this structure:

The spectral sequence

The argument that gives rise to $CC^*(\mathbf{x})$ can be generalized to (attempt to) compute $Ext^*_{\mathbf{h}-\mathbf{h}}(\mathbf{x},\mathbf{h})$ with \mathbf{h} a coalgebra in $_{\Bbbk}Sp$.

Theorem IV

There is a spectral sequence with

$$E_1^{p,q} \simeq \hom_{S_p}(\mathbf{x}(p), \mathsf{H}^{p,q}(\mathbf{h})) \implies \operatorname{Ext}_{\mathbf{h}-\mathbf{h}}^{p+q}(\mathbf{x}, \mathbf{h}),$$

where $\mathsf{H}^{p,q}(\mathbf{h}) = \mathsf{Cotor}_{\mathbf{h}}^{p,p-q}(\Bbbk, \Bbbk)$

Computing Cotor

Computing these Cotor groups is a complex combinatorial problem —this includes understanding them as \mathfrak{S} -modules! We did this for \mathbf{e} , where we know

$$\operatorname{Cotor}_{\mathbf{e}}^{p,q}(\Bbbk, \Bbbk) = egin{cases} \Bbbk^{-}(p) & ext{if } p = q, \ 0 & ext{else.} \end{cases}$$

Problem: for the species **L** of linear orders, with the aid of a computer, we obtained that for $0 \le p, q \le 5$

$$\dim_{\Bbbk} \operatorname{Cotor}_{\mathsf{L}}^{p,q}(\Bbbk,\Bbbk) = s(p,q),$$

where the numbers s(n, k) are the Stirling numbers of the first kind. We can prove this for entries (p, p), where we know $\text{Cotor}_{L}^{p,p}(\Bbbk, \Bbbk)$ is the sign representation of S_p . What about the others?

Questions?

References

- Marcelo Aguiar and Swapneel Mahajan, *Coxeter groups and Hopf algebras*, Fields Institute Monographs, vol. 23, American Mathematical Society, Providence, RI, 2006. With a foreword by Nantel Bergeron. MR2225808
- [2] Marcelo Aguiar and Swapneel Mahajan, Monoidal Functors, Species and Hopf Algebras, American Mathematical Society and Centre de Recherches Mathématiques, 2010.
- [3] Marcelo Aguiar and Swapneel Mahajan, Hopf monoids in the category of species, Hopf algebras and tensor categories, Contemp. Math., vol. 585, Amer. Math. Soc., Providence, RI, 2013, pp. 17–124. MR3077234
- [4] André Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981), no. 1, 1–82. MR633783
- [5] Gilbert Labelle, François Bergeron, and Pierre Leroux, Combinatorial Species and Tree-like Structures, Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, 1998. Translated by Margaret Readdy.