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1 Introduction

1.1. The pigeon-hole principle is an elementary result from enumerative combinatorics, as

is the principle of double counting, and both can be labeled a triviality. However, echoing

George Bergman [2], we recall that

“...what is trivial when described in the abstract can be far from clear in the context

of a complicated situation where it is needed.”

1.2. The purpose of what follows is to show, through a few concrete examples, that these two

principles can be used to prove remarkable and non-trivial results. We will being with rather

simple examples, and work our way up to prove Sperner’s lemma in two dimensions. It is

worth to remark that one can extend the lemma to arbitrary dimensions, and that it can be

used, as originally intended by Sperner, to give a proof of the Brouwer fixed point theorem,

and thus a proof of the theorem of invariance of domain. We will not pursue this in the notes,

but do recommend the reader to read about this on their own.

2 The pigeon–hole principle

2.1. Let us begin by stating the pigeon-hole principle: if n pigeons fly into r pigeon-holes

and n > r , then at least one pigeonhole will contain two pigeons. We can be slightly more

precise by noting that in fact at least one pigeonhole will contain dn/r e pigeons. As we

warned the reader in the introduction, the proof of this is easy. Indeed, if every pigeon-

hole contained less than n/r pigeons, the total tally of pigeons would be less than r ·n/r = n,

which cannot be.
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2.2. We now prove the following claim using the pigeon-hole principle.

Claim. Consider the numbers 1,2,3, . . . ,2n, and pick any n + 1 of them. Then there are two

which are relatively prime, and there are also two such that one divides the other.

Proof. For the first claim we note that, among n +1 numbers obtained from a list of 2n con-

secutive numbers, there must be two, one which is the successor of the other. Indeed, if this

was not the case, this set of n +1 numbers would not be contained in {1, . . . ,2n}. Since k and

k +1 are always coprime, we obtain what we want.

The second claim is slightly less obvious. We can write every number in the list we chose

in the form 2k m, where m is odd. Since our list comes from the set {1, . . . ,2n}, the odd num-

ber m is in the set {1,3, . . . ,2n − 1}, which has only n elements. The pigeon-hole principle

then says there must be two elements in our set of n +1 elements which have the same odd

part, and this gives what we wanted. Î

2.3. To conclude this section, we consider the following result, which is a not-so-trivial ex-

ample of a “Ramsey problem”. Broadly speaking, Ramsey theory tells us that large structures

of seemingly arbitrary shape must contain certain ordered substructures. Our example deals

with numbers and monotone subsequences.

Claim. Any sequence of mn+1 distinct real numbers contains either an increasing subsequence

of length m +1, or a decreasing sequence of length n +1, or both.

2.4. By increasing or decreasing we mean the subsequence is monotone and respects the

original enumeration of the sequence. For example, if our sequence is (1,4,3,5,6), of length

5 = 2 · 2+ 1, (1,3,6) is an increasing subsequence of length 3, but there are no decreasing

subsequences of this same length.

Proof. Let us consider, as in the statement of the claim, nm+1 distinct ordered real numbers

X = {x1, . . . , xnm+1}. We define a function f : X →N which assigns to xi the length f (i ) of the

longest increasing subsequence starting at this number. Observe that if for some i we have

that f (i ) Ê m +1, we have an increasing subsequence of length m +1, so we are done. We

can then assume that f has image in {1, . . . ,m}, and obtain f : X → {1, . . . ,m}.

Since |X | = mn +1, the pigeon-hole principle says that there must be some s ∈ {1, . . . ,m}

so that f (xi j ) = s for some choice of
⌈mn+1

m

⌉= n+1 subindices i1 < ·· · < in+1. To conclude our

proof, we observe that if we had xi j < xi j+1 , this would mean f (i j+1) Ê s+1, which cannot be.

It follows that the subsequence we have picked is decreasing, which is what we wanted. Î
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3 Double counting

3.1. The principle of double counting, which we can also call the principle of “counting

things in two ways”, is as follows. Suppose A and B are finite sets, and choose a subset S

of A×B . Let us say that a ∈ A is incident to b ∈ B exactly when (a,b) ∈ S. If Ba is the number

of elements of B incident to a ∈ A, and Ab the number of elements of A incident to b ∈ B ,

then ∑
a∈A

Ba = |S| = ∑
b∈B

Ab .

3.2. If we set up a matrix M of zeros and ones, indexed by A×B , so that M(a,b) = 1 if (a,b) ∈ S

and M(a,b) = 0 if not, then for b ∈ B , Ab is the sum of the b-th column, while for a ∈ A, Ba

is the sum o the a-th row. The principle of double counting says that, naturally, the sum

of all entries of M , which is just the cardinality of S, can be obtained by either adding up

elements in rows first and then adding them up, or by either doing this for the columns and

then, again, adding them up.

3.3. Recall that a simple undirected graph G is the data of a set of vertices V and a set of

edges E , given by a subset of 2-element subsets of V . Thus, there is an edge between vertex v

and w in V exactly when {v, w} ∈ E . The degree of a vertex is the number of edges it belongs

to, and we write it deg(v). Double counting gives us the following result, which implies in

particular the so-called handshaking lemma.

Claim. The following degree-sum formula holds for every finite simple undirected graph G:

∑
v∈V

deg(v) = 2|E |.

In particular, the number of vertices of odd degree of any finite simple undirected graph must

be even.

Proof. On the set V ×E , we consider the subset (v,e) where v is a vertex in the edge e. Count-

ing edges, this set has 2|E | elements, since every edge contains exactly two endpoints. Count-

ing vertices we obtain the left hand side of the degree-sum formula, since each vertex is in-

cident to exactly deg(v) edges. To prove the final remark in the claim, we reduce the degree-

sum formula modulo two, noting that the left hand side will reduce to deg v to 1 whenever

deg v is odd, while vertices of even degree will not contribute. Î
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4 The Sperner lemma

4.1. To conclude these set of notes, we state and prove the celebrated Sperner lemma in two

dimensions, starting with some geometrical considerations. A triangulation of a triangle is

a decomposition of it into smaller triangles which fit together edge-by-edge. Let us take our

triangle to be the 2-simplex ∆2, and call its vertices v0, v1, v2.

4.2. A Sperner colouring of a triangulation T of ∆2 is obtained by following these rules:

(1) Color v0 blue, v1 red and v2 yellow.

(2) Any vertex in the line joining v0 with v1 is colored blue or red, any one in the line

joining v1 and v2 red or yellow, and any in the line joining v2 and v0 yellow or blue.

(3) Finally, any vertex in the interior of the simplex is coloured arbitrarily with either of the

three colours.

Lemma (Sperner, 1928). Any Sperner colouring of a triangulation of the 2-simplex contains a

triangle whose vertices have different colours.

Proof. On every edge which has one vertex painted red and one blue, we will draw a door.

In particular, on the line segment from v0 to v1, where we go from colour blue to red, there

must be an odd number of opened doors. Through each door, enter the triangulation, and

observe that at each step, exactly two options occur: either the triangle is tri-coloured, and

we have reached a dead end, or the vertex opposite to the door is either blue or red and we

can move on. Once we have done this with every door, there are a number of dead end paths

and a number of paths which lead us in and out of our triangulation. To conclude our proof,

we note that the in and out paths pair up an even number of our doors, so there must be at

least one dead end door, and hence one tri-coloured triangle. Î

4.3. The reader may have noticed that we did not use any of the techniques developed in the

previous sections to prove the Sperner lemma. Is this really the case?
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