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1 Motivation

1.1 What can cohomology do for you?

(1.1.1) Let us consider the following problems: can we determine the rational points

in the unit sphere S1, that is, pairs (x, y) of rational numbers such that x2 + y2 = 1?

Given a compact manifold X and a self-map X → X , can we determine if it has fixed

points? If so, how many are there? Also, can we be determine the least number of

contractible open subsets one can cover it with? Can we determine, for each n ∈ N,

how many linearly independent vector fields there are in the n-dimensional sphere?

Given a set in Euclidean space defined by a finite number of polynomials, can we cut

it out by less polynomials? Can we determine how many lines intersect four given

lines in general position in projective 3-space?
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(1.1.2) It turns out that all of these problems can be solved, in one way or another,

through the judicious use of a cohomology theory. The following cohomology theory

correspond to the problems above, in the given order: Galois cohomology, singular

and de Rham cohomology, operations on topological K -theory, local cohomology of

ideals in rings, and finally Chow rings and intersection theory, specifically, Schubert

calculus. The extent to which one can say these problems are entirely solved by co-

homological methods varies from problem to problem and, of course, there are cases

when cohomology is not the most natural approach: one can easily determine ra-

tional points in the sphere with basic geometry! But this just illustrates cohomology

does not escape the mundane.

1.2 Cohomology: experiments, measurements and data storage

(1.2.1) There are at least three ways to think about cohomological invariants of ob-

jects: (i) they are experiments we perform on complicated objects that we cannot

understand, so we probe them, (ii) they are measurements we perform on objects, to

distinguish them, classify them and even determine them completely, or up to cer-

tain equivalences we are comfortable with and, (iii) they are gadgets that store data

from an object in a very refined fashion: this data could be stored in a different way,

but this would be useless for our purposes. To illustrate, de Rham cohomology fits

all three descriptions, many theories for algebras fit the description of (ii), while the

second Galois cohomology group of a field extension is an example of (iii).

(1.2.2) A fourth way cohomology theories arise is as corrections to our wishful think-

ing: in many situations, we are studying an assignment from objects to, for example,

vector spaces, and we would like this assignment to respect certain structure in our

objects. This is usually partially true, and cohomology appears naturally as a way to

produce a correct statement replacing our wishful thinking. For example, one can

study bundles on topological spaces, but assigning a bundle to its global sections

does not respect extensions of bundles, and cohomology fixes this problem.

(1.2.3) Another of the achievements of cohomology theory is endowing the stored

data with extra structure: associative algebra structures, Lie algebra structures and

cohomology operations, among others. This replaces our objects of interest with

a very rich algebraic gadget, and it turns out that these enhanced invariants have

played a fundamental role in solving open questions and in studying the objects that

give rise to them to a remarkable level of detail.
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2 First examples and definitions

2.1 Cocycles in nature: deformations of algebras

(2.1.1) Let us consider the following problem: suppose given an algebra A over the

complex or real numbers, and let A[ε] be the space of infinitesimal polynomials on

A, where ε2 = 0. We want to impose on A[ε]/(ε2) a new product ?, which we assume

is bilinear for the new variable, so that we need only determine it on coefficients, say

a?b = ab + f (a,b)ε.

(2.1.2) We claim that this product is unital for the usual unit of A[ε]/(ε2) if and only if

f : A× A → A is zero whenever one argument is 1 ∈ A, and that it is associative if and

only if for any three a,b,c ∈ A, the following cocycle condition holds, in which case we

call f a cocycle:

a f (b,c)− f (ab,c)+ f (a,bc)− f (a,b)c = 0.

Indeed, a?1 = a + f (a,1)ε, and since 1 and ε are an A-basis for A[ε], we want that

f (a,1) = 0 for any a ∈ A, and similarly f (1, a) = 0 for any a ∈ A. Let us now consider

the associativity of ?. We can compute that

(a?b)? c = (ab)c + ( f (a,b)c + f (ab,c))ε,

a? (b? c) = a(bc)+ (a f (b,c)+ f (a,bc))ε,

so that ? is associative if and only if f satisfies the cocycle condition.

(2.1.3) If we denote by Z 2(A) the collection of cocycles f : A × A → A, then we have

just shown we have a bijection between the set of infinitesimal deformations of A

to first order and the set Z 2(A). But it turns out that two different cocyles can give

equivalent deformations: we say two deformations are equivalent if there is an auto-

morphism G : A[ε] → A[ε] of the form G(a) = a + g (a)ε that sends one product to the

other. In such case, writing f1 and f2 for the cocycles giving rise to such deformations,

we have that for a,b ∈ A,

G(a?b) =G(ab + f1(a,b)ε) = ab + g (ab)ε+ f1(a,b)ε.

On the other hand, we compute that for a,b ∈ A,

G(a)?G(b) = (a + g (a)ε)? (b + g (b)ε) = ab + (ag (b)+ g (a)b + f2(a,b))ε.
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This means that two deformations are equivalent if and only if there is a self-map

g : A → A such that f1(a,b)− f2(a,b) = ag (b)− g (ab)+ g (a)b.

(2.1.4) This motivates the following defitnition: a cocycle is called trivial or a cobound-

ary if it is of the form f (a,b) = ag (b) − g (ab) + g (a)b. In this case the associated

deformation is equivalent to the trivial one where a ? b = ab. We write B 2(A) for

the space of such cocycles, and observe we have a obtained a bijection between the

equivalence class of first order infinitesimal deformations of A and the quotient space

HH2(A) = Z 2(A)/B 2(A) of cocycles up to boundaries. This is called the second Hoch-

schild cohomology group of A.

Exercise 1. Prove that every coboundary is indeed a cocycle, a fact we used without

proof in the definition of HH2(A) for A and algebra. That is, show that if f : A×A → A

is of the form f (a,b) = ag (b)− g (ab)+ g (a)b for some g : A → A, then f satisfies the

cocycle equation.

Exercise 2. Suppose that f1 : A × A → A and A1 is the associated deformation of A

to first order, and consider the space of A[ε]/(ε3) where now ε3 = 0, but ε2 6= 0: this

consists of polynomials a0+a1ε+a2ε
2 with multiplication given by the rule that ε3 is

zero. We consider now a product here where

a?b = ab + f1(a,b)ε+ f2(a,b)ε2.

What extra conditions must f1 and f2 satisfy in order that this defines an associative

product extending that of A1? When such a map f2 : A × A → A exists, we say that f1

is integrable to second order. Can you work out the conditions for integrability to an

arbitrary fixed order? We point to reader to [4, 5] for more information on this.

Exercise 3. Consider the algebra of dual numbersC[t ]/(t 2) and the Weyl algebra gen-

erated by two operators x, y with x y = q y x, where q ∈ C× is not a root of one. Show

that the first algebra has HH2(A) of dimension one, while the Weyl algebra has no

non-trivial deformations of first order, that is, HH2(A) = 0 in this case. What is the ex-

plicit multiplication of the only non-trivial deformation of the algebra of dual num-

bers?
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2.2 Chain complexes

(2.2.1) We now develop the necessary machinery to explain that the previous ex-

ample falls into the realm of cohomology theories and homological algebra. Useful

references for the general theory of homological algebra include [3, 10, 15].

(2.2.2) We begin by observing that if for n ∈ N0, we write C n(A) for the space of all

functions A ×·· ·× A → A, then what we have been looking at is at a sequence of lin-

ear maps C 1(A)
d 1

−→ C 2(A)
d 2

−→ C 3(A) where for f ∈ C 2(A) and g ∈ C 1(A), we have

(d 1g )(a,b) = ag (b)−g (ab)+g (a)b, and (d 2 f )(a,b,c) = a f (b,c)− f (ab,c)+ f (a,bc)−
f (a,b)c. The cocycles Z 2(A) are precisely the elements in the kernel of d 2, and the

trivial ones, or coboundaries, are those in the image of d 1, and the fact every cobound-

ary is a cocycle can be encoded in the equation d 2d 1 = 0. Then we defined HH2(A) =
kerd 2/imd 1. This motivated Gerhard Hochschild [8], and many others before him,

to consider the following objects.

(2.2.3) A cochain complex is a family of vector spaces indexed by the integers, say

C = {C n}n∈Z, along with boundary maps d n : C n −→ C n+1 such that d n+1d n = 0 for

each n ∈ Z. We will say that an element in C n has degree n, that an element is an

n-cocycle if it is in the kernel of d n . Elements in the image of d n−1 are called n-

coboundaries, and we write Z n(C ) and B n(C ) for the spaces of n-cocycles and n-

coboundaries, respectively. We will usually write d 2 = 0 whenever we want to say the

family of maps {d n : C n −→C n+1} satisfies d n+1d n = 0 for each n ∈Z.

(2.2.4) We now observe that, by definition, B n(C ) ⊆ Z n(C ) for each n ∈Z, so we write

H n(C ) for the quotient Z n(C )/B n(C ), which we call the nth cohomology group of C .

This is the space of equivalence classes [z] of n-cocycles under the equivalence re-

lation that z ∼ z ′ if z − z ′ = dn−1(c ′′) ∈ B n(C ) for some c ′′ ∈ C n−1. Thus we identify

two cocycles if their difference is a coboundary. If we do not want to worry about

degrees, we will use the notation Z (C ), B(C ) and H(C ) for the sequence of spaces we

just introduced.

(2.2.5) A map f : C → D between chain complexes is a family of linear maps { f n :

C n −→ Dn}n∈Z so that for each n ∈Z, f n+1d n
C = d n

D f n . We write this condition, more

simply, by d f = f d , and say that f and d commute. It means that f sends cocycles in

C to cocycles in D , and coboundaries in C to coboundaries in D , so that we have an

induced map H( f ) : H(C ) → H(D) so that H( f )[z] = [ f (z)]. That is, H( f ) sends the

equivalence class [z] of a cocycle z to the equivalence class [ f (z)] of the cocycle f (z).
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(2.2.6) What we are really interested in is not in chain complexes as stand-alone

gadgets, but rather in the following picture. Let us fix a class of objects C, which

could consist of algebras, manifolds, topological spaces, symplectic manifolds, vec-

tor bundles over some space, or groups. To each object x in this class, we will assign a

cochain complex of vector spaces, let us call it C (x), in such a way that whenever we

have a map between objects f : x −→ y , we have a corresponding map between com-

plexes C ( f ) : C (y) −→ C (x). This assignment should be compatible with our class C,

in the sense that if f is a composition of maps, say f = f1 f2, then C ( f ) is be the com-

position C ( f2)C ( f1), and if f is the identity map of x, then C ( f ) is the identity map of

C (x). Succinctly, we want a functor C : C −→ Ch from some category C of interest to

chain complexes.

(2.2.7) A fundamental concept of homological algebra is that of an exact sequence.

We say a sequence of maps, which we depict as a diagram V ′ f−→V
g−→V ′′ is exact at

V if the image of f equals the kernel of g . Note that this means in particular that g f =
0, so this diagram is a cochain complex, and exactness at V means precisely that the

homology ker g /im f is zero: every cocycle is a coboundary. We will say a complex is

exact if it has zero homology at every integer, and will then call such a complex a long

exact sequence. A short exact sequence is one of the form 0 −→V ′ f−→V
g−→V ′′ −→ 0;

that this sequence be exact means that f is injective, g is onto, and ker g = im f .

(2.2.8) A short exact sequence of cochain complexes consists of a diagram of the form

0 −→C ′ f−→C
g−→C ′′ −→ 0 where f and g are maps of complexes such that for each

n ∈ Z the sequence 0 −→ C ′n f n

−→ C n g n

−→ C ′′n −→ 0 is exact. It is not hard to see

that in this case, for each n ∈ Z, the sequence H n(C ′) → H n(C ) → H n(C ′′) is exact.

The cornerstone of homological algebra is the following result, which says that to

each short exact sequence of chain complexes we can assign a long exact sequence

of their cohomology groups by gluing these three terms sequences together. From

this long exact sequence, we can then relate an extract information in a “two our of

three principle”: if we know enough information about the cohomology of two of our

complexes, we expect to know enough about the cohomology of the third.

Theorem. Suppose that we have a short exact sequence of complexes as before. For

each n ∈ Z there is a linear map ∂n : H n(C ′′) −→ H n+1(C ′) so that the following se-

quence is exact: H n−1(C ′′) ∂
n−1

−→ H n(C ′)
H( f )−→ H n(C )

H(g )−→ H n(C ′′) ∂n

−→ H n+1(C ′).

We call the family of maps ∂= {∂n} the connecting morphisms of the sequence.



PEDRO TAMAROFF 7

Proof. Fix an integer n ∈ Z. We define the boundary map ∂n : H n(C ′′) −→ H n+1(C ′)
and leave to the reader to prove that the sequence above is exact. Let us then take an

n-cocycle [z ′′] in H(C ′′), that is, a class represented by an element z such that d z ′′ = 0.

Since the map C →C ′′ is onto, we can find some c ∈C so that g (c) = z ′′. Because g and

d commute, it follows that dc is in the kernel of g : g (dc) = d f (c) = d z = 0, although it

may not be a cocycle. Finally, because the sequence is exact, dc must be in the image

of f , so there is some z ′ ∈ C ′ such that f (z ′) = dc. Moreover, because f is injective,

d z ′ = 0, since f (d z ′) = d f (z ′) = d 2c = 0. We then set ∂n[z ′′] = [z ′], and note that

[z ′] ∈ H n+1(C ′). One has to check then that: (i) this is well defined, that is, the class

[z ′] depends only on the class [z ′′] and not on the choices we made to define it, (ii) the

image of ∂n−1 is the kernel of H n( f ), (iii) the kernel of ∂n is the image of H n(g ). Î

Exercise 4. We say a map of complexes f : C −→ D is a quasi-isomorphism if the in-

duced map H( f ) : H(C ) −→ H(D) is an isomorphism. Show that quasi-isomorphisms

satisfy the following property: if g : D → E is a second map, then whenever two out

of three of f , g and g f are quasi-isomorphisms, so is the third. To do this, show that

H(g f ) = H(g )H( f ).

Exercise 5. Show that if 0 → C ′ → C → C → 0 is an exact sequence of complexes,

then the sequence H(C ′) → H(C ) → H(C ′′) is exact. Can you give an example where

H(C ′) → H(C ) is not injective and one where H(C ) → H(C ′′) is not surjective in some

degree n ∈ Z? Can you give an example where both situations happen? Use the next

exercise to produce counter-examples!

Exercise 6. Let M be a manifold, N a submanifold, and let Ω∗(M) −→ Ω∗(N ) be

the restriction of forms. Show this map is surjective. The kernel of this is denoted

Ω∗(M , N ), and its homology is called the relative de Rham cohomology of the pair

(M , N ). Show the sequence of complexes 0 → Ω∗(M , N ) → Ω∗(M) → Ω∗(N ) → 0 is

exact and that the connecting morphism H∗(N ) −→ H∗+1(M , N ) can be described as

follows: if ω is a closed form in N , let ω be a form on M whose restriction is ω. Then

∂[ω] = [dω]. Note that dω is a cocycle but not necessarily zero.

Exercise 7. Let {U ,V } be an open cover of M by open subsets. Show that the se-

quence 0 →Ω∗(M) →Ω∗(U )⊕Ω∗(V ) →Ω(U ∩V ) → 0 is exact, where the first map is

the restriction and the second sends (ω,ω′) to the difference of their restrictions. The

long exact sequence associated to this is called the Mayer–Vietoris sequence for the

cover {U ,V }. What happens for covers by more open sets?
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3 The cohomology of spaces

3.1 Singular cochains

(3.1.1) We now introduce singular cohomology of topological spaces. In what fol-

lows, fix a topological space X , which we will usually want to think is a smooth man-

ifold. For n ∈ N0, a singular n-simplex on X is a continuous map σ : ∆n → X . In

particular, a 0-simplex is just a point, and a 1-simplex is a path in X . A singular n-

chain in X is a formal combination of singular n-simplices, λ1σ1 +·· ·+λtσt , where

the coefficients are complex numbers. We write C∗(X ) for the vector space of such

singular chains, and C∗(X ) for its dual. Elements in C∗(X ) are called singular co-

chains: these are functions which assign a complex number to each singular chain in

C. We proceed to make it into a complex of vector spaces.

(3.1.2) If σ :∆n −→ X is a singular simplex and if i ∈ {0, . . . ,n}, the i th face of σ, which

we write σi , is the map σi : ∆n−1 −→ X that is obtained by precomposing σ with the

map that that embeds∆n−1 ⊂∆n as those points with i th barycentric coordinate zero.

Then define dσ to be the singular chain
∑n

i=0(−1)iσi obtained as the alternating sum

of faces of σ. It is a pleasant exercise to check that d : C∗(X ) → C∗(X ) squares to

zero, and then so does the map d : C∗(X ) →C∗(X ) such that (dϕ)(σ) =ϕ(dσ). In this

way we obtain a cochain complex of singular cochains on X . We define the singular

cohomology of X to be the homology of C∗(X ), and write it H∗(X ).

3.2 Relative cohomology and cup products

(3.2.1) Suppose now that Y ⊆ X is a subspace. The inclusion map i : Y → X allows us

to assign a singular cochain in X to one in Y by restriction: every singular simplex in

Y is one in X , so we can evaluate any singular cochain in X at a simplex in Y . This

defines a map i∗ : C∗(X ) →C∗(Y ). The kernel of this map, that is, those singular co-

chains whose restriction to Y is zero, is denote by C∗(X ,Y ) and is called the cochain

complex of singular cochains in X relative to Y . Its cohomology is the cohomology of

X relative to Y . Because the map i∗ : C∗(X ) → C∗(Y ) is surjective, we have an exact

sequences of complexes 0 −→C∗(X ,Y ) −→C∗(X ) −→C∗(Y ) −→ 0 and the long exact

sequence associated to this is called the long exact sequence of relative cohomology

for the inclusion Y ⊆ X .
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(3.2.2) Suppose thatσ is an n-simplex in X . We define its i th front face iσ to be the i -

simplex obtained by restrictingσ to its first i barycentric coordinates, and its i th back

face to be the (n−i )-simplexσn−i obtained by restrictingσ to its last n−i barycentric

coordinates. We now define a product of singular cochains as follows. Suppose that f

is a p-cochain and g is a q-cochain, and that σ is a (p +q)-simplex. We define f ^ g

to be the p + q-cochain so that for each such simplex, ( f ^ g )(σ) = f (pσ)g (σq ). It

is straightforward to check that ^ : C∗(X )×C∗(X ) −→ C∗(X ) is an associative unital

product that makes C∗(X ) into an algebra. Moreover, it is compatible with the differ-

ential on cochains in the following sense: if f and g are cochains, and g is in degree

p, then we have the Leibniz formula d( f ^ g ) = d f ^ g + (−1)p f ^ d g . From this

it follows that if f and g are cocycles then so is their product, and if one of them is a

boundary, so is their product, so that there is a well defined product in H∗(X ), which

we also call the cup product.

(3.2.3) We now observe that if A,B ⊆ X are subspaces, then C∗(X , A) ^ C∗(X ,B) ⊆
C∗(X , A ∪ B), that is, the cup product of two cochains, one which vanishes on A

and the other which vanishes in B , vanishes in the union A ∪B . This means that

when considering relative cohomology groups, what we actually have is a map ^ :

H∗(X , A)× H∗(X ,B) −→ H∗(X , A ∪B). Of course, we can iterate this to any number

of factors, and this observation will be crucial in the following subsection.

3.3 The cup length and Lusternik–Schnirlemann category

(3.3.1) A space X has cup length at most n if every n-fold product of possibly distinct

cohomology classes in X vanish, and it has cup length n if it has cup length at most

n but not at most n −1. We write cl(X ) for this integer, which may be infinite. In a

similar fashion, a space has LS category at most n if it can be covered by n open sets

such that each inclusion U ⊆ X is null-homotopic, and that is has LS category n if

it has LS category at most n but not at most n −1, and write cat(X ) for this number,

which, again, way be infinite. We can now prove the following result.

Theorem. If X is contractible, then H∗(X ) = 0 for ∗ > 0. More generally, let X be a

space and suppose that we have n subspaces U1, . . . ,Un whose union is X , and so that

the inclusions Ui ⊆ X are null-homotopic. Then any product of n cohomology classes

in H∗(X ) is zero. In other words, we have that cl(X ) É cat(X ) for every space X . In

particular, if we can find ξ ∈ H∗(X ) such that ξn 6= 0, we cannot cover X by n open

contractible sets.



10 NOTES ON COHOMOLOGY

(3.3.2) We say that an inclusion U ⊆ X is null-homotopic if U can be shrunk to a point

in X , and that a space X is contractible if the inclusion X ⊆ X is null-homotopic. For

example, for every convex set U in Euclidean space X , the inclusion U ⊆ X is nullho-

motopic. On the other hand, the incusion of S1 in R2 \ (0,0) is not null-homotopic.

One can check that if U ⊆ X is null-homotopic, then H∗(X ) → H∗(U ) is the zero map

when ∗> 0: we will use this in what follows.

Proof. To prove the first claim, note that if X is contractible, then the identity X → X

is null-homotopic, and the map H∗(X ) → H∗(X ), which is also the identity, is zero.

This means that H∗(X ) is the zero vector space, since this is the only map whose iden-

tity map is zero. Let us now put ourselves in the situation where X is covered by n

subspaces whose inclusions are null-homotopic, and pick cocycles ϕ1, . . . ,ϕn repres-

enting cohomology classes in H∗(X ). We wish to show that ϕ1 ^ · · ·^ϕn is zero. To

this end, let us begin by noting that for each i ∈ {1, . . . ,n} we have an exact sequence

H∗(X ,Ui ) −→ H∗(X ) −→ H∗(Ui ). The last map is zero, so the statement is that the

map j∗ : H∗(X ,Ui ) −→ H∗(X ), which views a class of a cocycle which vanishes on Ui

as a cocycle in X , is surjective. This means that for each i ∈ {1, . . . ,n}, we can find a

cocycle ψi such that j∗[ψi ] = [ϕi ]. Moreover, by Exercise 9, if we let ξi = [ψi ] and

ξ′i = [ϕi ], we have that

j∗(ξ1 ^ · · ·^ ξn) = ξ′1 ^ · · ·^ ξ′n .

It follows that, to show the product on the right vanishes, we can show the one on the

left does. But this is obtained by a product map on relative cohomology groups

H∗(X ,U1)×·· ·×H∗(X ,Un) −→ H∗(X ,U1 ∪·· ·∪Un) = H∗(X , X )

which vanishes because C∗(X , X ) = 0, and so H∗(X , X ) = 0. Î

Exercise 8. Although the wedge product on forms is super-commutative, the cup

product operation on C∗(X ) is not super-commutative: if f is a cocycle in degree

p and g is one in degree q , then [ f , g ] = −(−1)p+q d( f ^1 g ) where ^1 is the 1-cup

product of Steenrod. Can you find an expression for it, at least in low degrees? Higher

cup products were defined by Steenrod in [12], they witness the non-commutativity

of the cup product in a coherent way, and can be used to describe all stable operations

on the cohomology of spaces.
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Exercise 9. Suppose that f : X → Y is a map between spaces. Show that there is a

map of cochain complexes f ∗ : C∗(Y ) → C∗(X ) so that if σ is a singular chain in X

and ifϕ is a singular cochain in Y , then f ∗(ϕ)(σ) =ϕ( f σ). Show that f ∗ respects cup

products in the sense that if ψ is another singular cochain in Y , then f ∗(ϕ^ ψ) =
f ∗(ϕ)^ f ∗(ψ).

Exercise 10. Show that one can cover projective n-space by n +1 contractible open

subsets, but not by n. In particular, deduce that one can cover the sphere by two

contractible open sets, but that the sphere is not contractible. What is the cup lenght

of the n-torus? And what is its Lusternik–Schnirelmann category? Can you find a

space with infinite cup length?

4 Answers and stranger things

4.1 The motivating examples of the introduction

We now give a summary of the way cohomology theories give answers to the ques-

tions posed in the introduction.

1. Rational points on the sphere. To each field extension F ⊆ E with Galois group

G , one can consider the group cohomology H∗(G ,F×), which is called the Galois co-

homology group of the extension. Hilbert’s Satz 90 says that the first cohomology

group of a cyclic extension vanishes. We apply this to the extension Q(i )/Q, where

we know how to compute H 1(G ,F×): this is simply the kernel of the norm map 1+τ :

Q(i ) →Q such that a + i b 7→ a2 +b2 modulo the image of the map 1−τ :Q(i ) →Q(i )

such that T (z) = zz̄−1. Since H 1(C2,Q×) is zero, every rational point on the sphere

is of the form zz̄−1 for some s + i t . Unwinding the definitions we see that any ra-

tional point on the sphere is of the form ((s2 − t 2)/(s2 + t 2),2st/(s2 + t 2)). where s, t

can be chosen to be natural numbers. This gives us the usual parametrization of Py-

thagorean triples by X = s2−t 2, Y = 2st , and Z = s2+t 2: these are precisely the triples

(X ,Y , Z ) of integers such that X 2 +Y 2 = Z 2.

2. Fixed points on manifolds. Given a self-map f : X → X on a compact manifold, we

can consider the Lefschetz number of f , given by L( f ) = ∑n
i=0(−1)i Tr( f ∗ : H i (X ) −→

H i (X )). The Leftschetz fixed point theorem says that if L( f ) is non-zero, then f has

at least one fixed point. In fact, it shows that L( f ) is the sum over the fixed points

of f weighed by the degree of f at that point. Because these can be negative, it
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may happen that L( f ) = 0, even though f has fixed points. One can also consider

critical points of self-maps, that is, points of some f : X −→ X where d fp = 0, and

the minimum number F (X ) of critical points a self map can have. It turns out that

cat(X ) É F (X ), where the first number is the Lusternik–Schnirelmann category intro-

duced in these notes. The book [7] contains the elements of fixed point theory.

3. Linearly independent vector fields on spheres. For a long time, it was known

that there were at least p(n)− 1 linearly independent vector fields on the n-sphere,

but it was not known whether this bound was sharp [1]. To any manifold one can

assign a cohomology ring K (X ), called its K -theory. By introducing certian opera-

tions Φ : K (X ) −→ K (X ), and analyzing them in the case of real projective spaces and

quotients of them by projective subspaces, Frank Adams proved that this bound is

sharp. Other operations on cohomology rings played a fundamental role in algebraic

topology, such as the Steenrod powers and Bockstein homomorphisms. Frank Adams

introduced other operations, called secondary operations, that are defined via usual

operations, which are now called primary. We refer the reader to [13].

4. Spaces cut by polynomial equations. Let A be a commutative ring and suppose

I is an ideal in A. For each A-module M , we can define a submodule ΓI (M) = {x ∈
M : I i x = 0 for some i ∈N0}. This functor is left exact, and its right derived functor is

called the local cohomology of M with support on I and denoted by H∗
I (M). It turns

out that if I can be generated by n elements, then H i
I (M) = 0 for i > n, so that if

we can find an A-module M such that H n
I (M) 6= 0, we can conclude that I cannot

be generated by less than n elements. If we take A to be a polynomial ring and I

to be an ideal defined by (finitely many) polynomials, this method can be used to

determine when algebraic sets cannot be cut by a certain amount of equations. Local

cohomology enjoys very nice properties, such as the existence of a Mayer-Vietoris

sequence involving the sum and intersection of ideals. This is just the manifestation

on the algebraic side of the fact local cohomology can be defined, more generally, for

sheaves on schemes relative to a closed subscheme. See [6, 15].

5. Lines intersecting lines. If X is a projective variety, then we can assign it its Chow

ring A∗(X ), which consists of certain equivalence classes of subvarieties. In favour-

able situations, one can endow A∗(X ) with an intersection product that corresponds,

geomtrically, to the intersection of subvarieties. If X is the variety of lines in project-

ive 3-space or, what is the same, the Grassmann variety G(2,4), one can show that

A∗(X ) is generated by six classes: s4 corresponds to X ⊆ X , s3 to the lines intersecting
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a given line inP3, s21 to those passing through a given point, s22 to the lines contained

in a plane, s1 to those contained in a plane and passing through a point in this plane

and, finally, s0 to those passing through two given points. The product s4
3 is an ele-

ment that lives in A0(X ), which one can prove is the set of integers Z, and is equal to

2: there are two lines intersecting four other fixed lines in general position.

4.2 Beyond here lie Demogorgons

(4.2.1) Entire books have been written regarding cohomology theories, like K -theory,

Galois cohomology, cohomology of schemes, local cohomology, equivariant cohomo-

logy theories, Čech cohomology, Hochschild cohomology, Chevalley–Eilenberg co-

homology, ètale cohomology, and others, and it is impossible to give a full picture in

such a short set of notes. It is worth remarking that cohomology theories are usually

conceived as tools to solve problems, or at least this has been the mindset in modern

times, the shining example of this being the idea of André Weil that a collection of

conjectures, going back to ideas of Emil Artin, should be a consequence of the exist-

ence of a cohomology theory for varieties over finite fields, having certain properties

similar to those of other cohomology theories. One of the outstanding achievements

of algebraic geometers of the 20th century was the construction of Weil cohomology

theories and the subsequence proof of the Weil conjectures, as envisioned by Weil.

These involved the work of Bernard Dwork, Alexander Grothendieck, Pierre Deligne,

Jean-Louis Verdier and Jean-Pierre Serre, among others. See [9].

(4.2.2) A rather striking state of affairs is that cohomology is very hard to compute,

even though it can computed in a wide variety of ways. Early techniques developed

to compute cohomology groups involved Mayer–Vietoris sequences and long exact

sequences, for example. As cohomology theories became more intricate, these tech-

niques evolved. A major advance was the use of spectral sequences by Jean Leray

to compute cohomology of sheaves on topological spaces. He developed them in

captivity after he was taken prisoner by the German forces in 1940 and sent to camp

a in Austria, where he remained until the end of the war. Spectral sequences have

now become an invaluable tool of computation, and there are ongoing collective ef-

forts to study certain spectral sequences of interest, such as Frank Adams’ spectral

sequences [11, Chapter 9], which compute the stable homotopy groups of spheres.

Other spectral sequences once relevant to algebraic topology are the Serre spectral

sequence and the Eilenberg–Moore spectral sequences.
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(4.2.3) Around the same time as Jean Leray, Henri Cartan and Samuel Eilenberg de-

veloped the general language of homological algebra, along with the seminal Tohoku

paper of Alexander Grothendieck. All three developed the idea of doing cohomology

theory in abelian categories, which includes the notion of resolutions, that of left and

right exact functors and their derived functors, external and internal products in the

resulting cohomology groups, and others. In this way, they showed how the gadgets

developed by algebraic topologists, for example, were part of a theory of their own

right, and explained how to obtain their results from a general theory.
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