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1 Reminders

1.1 Binomial series

(1.1.1) We will always denote a sequence of numbers with a lower case latin letter, and its

respective ordinary generating function with the corresponding capital latter. Thus, for ex-

ample, the generating function of a sequence f :N0 −→ C, which we usually denote by ( fn)

for brevity, will be denoted by F .

(1.1.2) For c ∈C, define the binomial series with parameter c by the power series

βc (z) = ∑
nÊ0

(
c

n

)
zn , where

(
c

n

)
= c(c −1) · · · (c −n +1)

n!
.

It can be shown that this series converges in the open ball B(0,1) and coincides there with

(1+ z)c = exp(c log(z)) where log denotes the principal branch of the complex logarithm.

(1.1.3) We can use the above to obtain a power series expansion for (1−γz)−d , where d ∈N
and γ ∈C is a fixed scalar: we have

1

(1−γz)d
= ∑

nÊ0

(
−d

n

)
(−1)nγn zn .

Now a direct computation shows that for any d ,n ∈Nwe have(
−d

n

)
= (−1)n

(
n +d −1

d −1

)
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which gives us the desired representation:

1

(1−γz)d
= ∑

nÊ0

(
n +d −1

d −1

)
γn zn .

1.2 Finite differences

(1.2.1) In what follows, it will be useful to have in mind that the C-vector space C[n] of

polynomials in n with complex coefficients has basis B0 = {(n)0, (n)1, (n)2, · · · }, where (n) j =
n(n−1) · · · (n− j +1). We call (n) j a falling factorial power or binomial polynomial. By trans-

lation, it follows that for any i ∈Z, the family Bi = {(n+i )0, (n+i )1, (n+i )2, · · · } is also a basis.

(1.2.2) In fact, much like the usual basis 1,n,n2,n3, . . . is related to the iterated derivatives of a

polynomial, in the sense that the coefficient of n j in a polynomial P is given by P ( j )(0)/ j !, the

new basis B0 is related to the iterated finite differences —what can be thought as a discrete

analog of differentiation— in such a way that the coefficient of (n) j in a polynomial P is given

by ∆ j P (0)/ j !, where in general for n ∈N0,

∆ j P (n) =
j∑

u=0
(−1) j−u

(
j

u

)
P (n +u)

is the j th finite difference of P at n ∈N0. For a gentle introduction to finite differences, the

reader can consult [1].

2 Rational functions

2.1 A classical example

(2.1.1) The problem of enumerating a sequence of sets {X0, X1, . . .} can sometimes be tackled

by obtaining a recursive formula for #Xn+1 in terms of #X0,#X1, . . . ,#Xn . The best case scen-

ario happens when the recursion happens to be linear. Let us begin with an example.

(2.1.2) For each n ∈N, let fn denote the numbers of ways of writing n as an ordered sum of

elements of {1,2}, and let Fn denote the collection of such ordered tuples. In particular f0 = 0

and f1 = 1, since there is no way of writing zero as a sum of elements of {1,2}, while we can

write 1 exactly in one way as a sum of elements of such set.

(2.1.3) Assume now that n Ê 2, and let us show that there is a bijection between Fn and the
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union Fn−1 ∪Fn−2. This will certainly prove that for every n Ê 2, we have

fn = fn−1 + fn−2. (1)

Concretely, given t = (x1, . . . , x`) ∈ Fn , consider t ′ = (x1, . . . , x`−1), that is, delete the last term.

If x` = 2 then t ′ ∈ Fn−2, and if x` = 1 then t ′ ∈ Fn−1. We have thus defined a map

φ : t ∈ Fn 7−→ t ′ ∈ Fn−1 ∪Fn−2,

whose inverse is readily described: if s ∈ Fn−1, append a 1 to the end of s, and if s ∈ Fn−2,

append a 2 to the end of s.

(2.1.4) We now exploit the above recurrence to obtain the ordinary generating function of

the sequence ( fn). Multiplying (1) by zn and summing through n Ê 2 we obtain that

F (z)− z = F (z)(z + z2) (2)

or, what is the same, that F is a rational function of z:

F (z) = z

1− z − z2
.

It is perhaps not yet evident why this is useful. The point is we can now factor 1− z − z2 as

(1−ψz)(1− ψ̄z) where ψ= 1+p5
2 and ψ̄= 1−ψ and use partial fractions to deduce that

F (z) = zp
5

(
1

1−ψz
− 1

1− ψ̄z

)
.

Using the geometric series now provides us with a closed formula for the nth term of ( fn):

fn = 1p
5

(ψn − ψ̄n). (3)

(2.1.5) It turns out that (1), (2) and (3) are all equivalent statements. However, each one

has its own use depending on one’s objective. The recursion (1) is useful to deduce certain

surprising identities as, for example, the following Catalan identity: for any n,r ∈Nwe have

f 2
n − fn+r fn−r = (−1)n−r f 2

r .

On the other hand, (3) is certainly useful to first estimate the growth of ( fn), and second, to
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compute fn in a non-recursive way: since we have that ψ̄n/
p

5 < 1/2 for n ∈N, it follows that

fn =
[
φn

p
5

]
for any n Ê 0 where [−] denotes the nearest integer function. The reader can try to find

situations in which (2) is more useful than the other two results, since I have not come up

with one myself.

2.2 The main result

We now state and prove a theorem which shows that the results just obtained for the se-

quence ( fn) are part of a general phenomenon.

Theorem 2.1. Fix d ∈N andα1, . . . ,αd ∈Cwithαd nonzero, and let Q(z) = 1+α1z+·· ·+αd zd .

Then, for a function f :N0 −→C, the following statements are equivalent:

(1) The generating function F is rational, of the form P/Q where P is a polynomial of degree

less than d.

(2) For every n Ê 0, we have the recursion αd fn +αd−1 fn−1 +·· ·+α1 fn+d−1 + fn+d = 0.

(3) For every n Ê 0, we have the formula fn = ∑k
i=1 Pi (n)γn

i , where Q(z) = ∏k
i=1(1−γi z)di

and each Pi is a polynomial of degree less than di .

Proof. Define Vi for i ∈ {1,2,3} to be the subspace of functions f :N0 −→C such that the i th

condition holds, and define V4 to be the subspace of functions f :N0 −→Cwhose generating

function is of the form

F (z) =
k∑

i=1
qi (z)(1−γi z)−di

where for each i ∈ {1, . . . ,k}, qi is a polynomial of degree less than di .

We observe that for i ∈ {1,2,3,4} we have dimCVi = d . Indeed, V1 has dimension d since

the space of polynomials of degree less than d has this dimension, V2 has dimension d be-

cause the linear recurrence for ( fn) determines f uniquely in terms of f0, . . . , fd−1, V3 has

dimension d since the d coefficients of the polynomials P1, . . . ,Pk determine ( fn) uniquely,

and finally V4 has dimension d by this last argument on the polynomials q1, . . . , qk .

We now deduce that V1 ⊆ V2 by equating coefficients in QF = P , that V4 ⊆ V1 by taking a

common denominator in the expression of F , and finally we argue that V4 ⊆ V1. Indeed, by
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linearity, it suffices we notice that for each c, j ∈N0 and γ ∈Cwe have

z j

(1−γz)c
= ∑

nÊ0

(
n + c −1− j

c −1

)
γn− j zn

where
(n+c−1− j

c−1

)
γ− j is a polynomial of degree c −1. Since comparable vector spaces of equal

dimension are in fact equal, we deduce that V1 =V2 =V3 =V4, which is what we wanted. Î

(2.2.1) This theorem characterizes only those power series F that are rational functions of

the form P/Q where P has degree less than Q, but it easy to deduce a general statement from

it. Indeed, if F is rational of the above form but degP Ê degQ, we can use long division to

write F = R+S/Q with S,R polynomials and with degS < degQ. It follows by looking at F −R

that for large values of n > t where t = degR, the coefficients of F satisfy a linear recurrence

as in the last theorem. Conversely, if for large values of n the coefficients of F satisfy a linear

recurrence, the above theorem yields that F = R +S/Q as before.

(2.2.2) It is obvious that if F and G are power series that are rational, so is their usual Cauchy

product FG . We can define another product F ?G , known as the Hadamard product, so that

the nth coefficient of F ?G is fn gn . A remarkable corollary of the theorem we have proven is

that

Corollary 2.2. The Hadamard product of two rational power series is again rational.

Proof. Indeed, using the third characterization of rational power series given by the theorem,

we know that for n large we have closed formulas

fn =∑
Pi (n)γn

i and gn =∑
Qi (n)δn

i

where each Pi and each Qi is a polynomial. We then have that for large enough n,

fn gn =∑
Pi (n)Q j (n)(γiδ j )n ,

which, by another use of the theorem and the discussion in (2.2.1), shows F ?G is itself a

rational function. Î
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2.3 Exercises

The following exercises are intended to get a grasp of the contents of the section.

(1) Let fn denote the number of ways of tiling a 2×n board with 2×2 and 1×2 tiles, where

the 1×2 tile is allowed to be positioned both vertically or horizontally. The following

shows a valid tiling for the 2×5 case.

Obtain a linear recursion for the sequence ( fn) and hence exhibit F as a rational func-

tion, and give a closed formula for its coefficients.

(2) Prove the following precise form of the discussion made in (2.2.1).

Theorem 2.3. Let f : N0 −→ C, and suppose that F = P/Q where P and Q are polyno-

mials. Then there is a unique finite set E f ⊆ N0, called the exceptional set of f , and a

unique function f1 :N0 −→C× such that the function g :N0 −→C defined by

g (n) =
 f (n) if n ∉ E f ,

f (n)+ f1(n) if n ∈ E f .

satisfies G = S/Q where S is a polynomial with degS < degQ. Moreover, if E f is nonempty,

then the largest element m in it is degP −degQ –or, equivalently, the degree of the poly-

nomial R in our previous discussion– and m is also equal both to the largest integer for

which statements (2) and (3) in Theorem 2.1 fail to hold.

(3) Deduce from what we have proven that the following three statements are equivalent

for a coefficient function f :N0 −→C:

(1) We have F = P/(1− z)d+1 where P is a polynomial of degree at most d ,

(2) For all n Ê 0 we have ∆d+1 f (n) = 0, that is, ∆d+1 f = 0.

(3) The function f is a polynomial function in n of degreemat most d .

Recall we defined ∆ in (1.2.2). This shows that, much like the case of ordinary dif-

ferentiation, the polynomial coefficient functions are those that eventually have zero

discrete derivative.
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3 D-finite and P-recursive functions

3.1 Differentiably finite functions

(3.1.1) Write C�z�[z−1] for the set of formal Laurent series with finite principal part, that is,

expressions of the form

∑
nÊn0

an zn

where n0 ∈ Z. This is a vector space over the field of rational functions C(z) by usual mul-

tiplication of power series. We will say a power series F is differentiably finite, or D-finite,

for short, if the C(z)-span of F and all its derivatives is finite dimensional in C�z�[z−1]. For

brevity, we will use ∂ to denote the derivative with respect to the variable z. The following

lemma sheds some light on our last definition.

Lemma 3.1. The following are equivalent for a powerseries f ∈C�z�:

(1) The series F is D-finite,

(2) There exist polynomials q0, . . . , qk , q, not all zero such that

k∑
t=0

qt∂
t F = q. (4)

(3) There exist polynomials p0, . . . , pm not all zero such that

m∑
t=0

pt∂
t F = 0. (5)

(3.1.2) Observe that if we introduce the differential operators with polynomial coefficients

D =
k∑

t=0
qt∂

t ,D ′ =
m∑

t=0
pt∂

t

then (4) says that DF ∈ C[z], while (5) says that D ′F = 0. This shows, in particular, that D-

finite power series are a C-linear subspace of C�z�[z−1]. But much more is true, as we will

soon prove. Note, also, that rational power series are manifestly D-finite in light of (4), for if

F = P/Q then taking the operator D =Q gives DF ∈C[z].

Proof. Suppose that F is D-finite, and that the linear span of F and all its derivatives has

dimension d . Then there exist a linear dependence relation among the d + 1 power series
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F,∂F, . . . ,∂d F , and clearing denominators in this relation gives an equation (4) with q = 0,

so (1) =⇒ (2). If such an equation holds, and if q has degree t , then differentiating this

equation t +1 times gives an equation of the form (5), so that (2) =⇒ (3). Finally, consider

an equation (5) where pm 6= 0. Dividing by pm now gives that ∂mF is in the rational span of

f ,∂ f , . . . ,∂m−1F . Differentiating (5) and repeating the argument now shows ∂m+1F is in the

rational span of f ,∂ f , . . . ,∂m−1F . Inductively, it follows that the linear span of F and all its

derivatives has dimension at most m, so (3) =⇒ (1). Î

(3.1.3) Observe that D-finite functions are an extension of rational functions in the sense we

allow for differentiation in a linear dependence equation, and not only the appearance of

polynomials. Because differentiating a power series is equivalent to multiplying its coeffi-

cients by the falling power polynomials introduced in (1.2.1), that is,

∂t F = ∑
nÊt

(n)t fn zn−t ,

the following definition should not come off as a surprise.

3.2 Polynomially recursive functions

(3.2.1) We say a function f : N0 −→ C is polynomially recursive, or P-recursive, for short, if

there exist d ∈N0 and polynomials P0, . . . ,Pd with Pd 6= 0 such that for all n Ê 0,

Pd (n) fn+d +·· ·+P0(n) fn = 0 (6)

(3.2.2) It is immediate, as opposed to the rational case, that the property of f being P-

recursive is not affected by modifying it in a finite subset S of N0: we can always multiply

(6) by a polynomial Q having roots in S, and we now obtain an equation that shows the mod-

ified version of f is still P-recursive. Note that the coefficients functions of a rational power

series is, again, manifestly P-recursive, for our result shows we can take Pd , . . . ,P0 to be con-

stant.

(3.2.3) It seems valuable to observe that we can give a linear algebraic definition of P-recursive

functions that mimics that for D-finite power series. Let us say two coefficient functions

f , g :N0 −→C have the same germ if they agree for large values of n. This defines an equival-

ence relation on the set of all such functions, and we write [ f ] for the equivalence class of f

and call it the germ of f . By the above, if f and g have the same germ, then f is P-recursive if

and only if g is, so we can talk about P-recursive germs. The following lemma is our desired

analogue. We define (S f )(n) = f (n +1), so that in general (Si f )(n) = f (n + i ).
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Lemma 3.2. A function f :N0 −→C is P-recursive if and only if the span of the germ of f and

its shifts {[ f ], [S f ], [S2 f ], . . .} is a finite dimensional subspace of the space of all germs, when

viewed as a C(n)-vector space.

Proof. Luckily, this is just a fancy restatement of P-recursiveness, so the proof is easy, but it

will come in handy in what follows. If f is P-recursive, then we can write by (6)

[Sd f ] =
d−1∑
i=0

Pi (n)

Pd (n)
[Si f ]

so that Sd f is in the C(n)-span of [ f ], [S f ], . . . , [Sd−1 f ]. Now shifting gives all higher shifts of

[ f ] are also in this span. Conversely, if theC(n)-span of [ f ] and its shifts is finite dimensional,

clearing denominators we obtain an equation (6) for the germ of f , and we can deduce f is

P-recursive for large values of n, so it must be P-recursive. Î

3.3 The equivalence of both definitions

We can now prove the desired analogue of Theorem 2.1 for D-finite functions.

Theorem 3.3. A powerseries F is D-finite if and only if f is P-recursive.

Proof. Suppose that F is D-finite and recall, once again, that for any t , s ∈N0 we have

z t∂sF = ∑
nÊt

(n + s − t )s fn+s−t zn

Since (n + s − t )s is a polynomial in n, equating coefficients in (5) gives a recurrence of the

form (6). Conversely, suppose that f is P-recursive, so we have a recursion of the form (6).

Recall that we can write Pi (n) in the basis Bi of binomial polynomials introduced in (1.2.1),

and we can now note that

∑
nÊ0

(n + i ) j fn+i zn = z j−i∂i F +R

where R is a possibly zero polynomial in z and z−1: note that it may happen that j < i , so

some finitely many terms in the right hand side have to be fixed to match up the left hand

side. It follows now that multiplying (6) by zn and summing, we will obtain an equation of

the form (4) after clearing some negative powers of z. Î

(3.3.1) At this point it would be valuable to provide examples of D-finite power series that

are not rational. We were previously introduced to the generating function of the Catalan
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numbers, which can be defined by c0 = 0 and by the recursion

cn+1 =
n∑

t=1
ct cn+1−t

for n Ê 0. We have shown that

C (z) = 1−p
1−4z

2
,

which shows C is D-finite. Indeed, one way to see this is that it suffices we show S =p
1−4z

is D-finite, but this satisfies the equation 2PS′−P ′S = 0 where P = 1−4z. More generally, if

R is rational and if k ∈N0, any kth root S of R is D-finite although generally not rational, for

it satisfies the equation kRS′−R ′S = 0 from where we can clear denominators to obtain an

equation of the form (5).

(3.3.2) Yet another way to note that Catalan numbers are P-recursive is to exhibit a P-recursion

for them, and since we know that

cn+1 = 1

n +1

(
2n

n

)

we can now note that (n+1)cn+1−2(2n−1)cn = 0 for every n Ê 1. We can also use the following

corollary of Theorem 3.3.

Theorem 3.4. The Cauchy and Hadamard product of D-finite powerseries is again D-finite.

Proof. Both statements are proved with the same technique. If you know about tensor products

of vector spaces, the idea is that if V and V ′ are finite dimensional and we want to show

a third space W is finite dimensional, we can do so by producing a linear transformation

T : V ⊗V ′ −→V ′′ so that im(T ) contains W . It then follows that

dimW É dimim(T ) É (dimV )(dimV ′) <∞

so W is indeed finite dimensional.

So suppose that F and G are both D-finite, and let us show that the Cauchy product FG is

D-finite, too. It suffices we show that FG and their derivatives span a finite dimensionalC(z)-

vector space. Now note that if {F,∂F, . . . ,∂t F } and {G ,∂G , . . . ,∂sG} are bases for the span of F

and its derivatives and the span of G and its derivatives, respectively, then, by Leibniz’s rule,

the span of the set {∂i F∂ j G : i ∈ �1, t�, j ∈ �1, s�} contains the span of FG and its derivatives,

so FG is also D-finite. To show that F ?G is D-finite, we instead show its coefficients are
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P-recursive. To do so, we use Lemma 3.2, and show that the span of the germs of [ f g ] and

its shifts is finite dimensional. Again, we note that since [ f ] and [g ] and their shifts span

a finite dimensional subspace of the space of all germs, the span of {[Si f S j g ] : i , j ∈ N0} is

finite dimensional, and it contains the span of {[Si f Si g ] : i ∈N0} so [ f g ] is P-recursive, and

so is f g , as we wanted. Î
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