Little disks operads and configuration spaces ### Talk by Najib Idrissi Notes by Pedro Tamaroff **Speaker's abstract.** Operads are objects that govern categories of algebras. Initially introduced in the sixties to study iterated loop spaces, they have proved useful in several areas of mathematics. In most of these applications, the little disks operads play a central role. In the first part of this talk, we will focus on one of the applications studied in the 2015 Talbot Workshop, Goodwillie–Weiss embedding calculus, which will serve as an "excuse" to introduce operads. In the second part of this talk, I will set out some of the recent developments regarding the links between the little disks operads and the real homotopy types of configuration spaces of manifolds. (Second part based on joint works with Ricardo Campos, Julien Ducoulombier, Pascal Lambrechts, and Thomas Willwacher.) #### **Contents** | 1 | The embedding calculus | 1 | |---|---------------------------------------------------------------------------------------------------------------------|---| | 2 | Configuration spaces of points | 3 | | 3 | Operads and their modules | 3 | | | 3.1. Bonus: deloopings | | | 4 | The homotopy type of configuration spaces | 5 | | | 4.1. The case of Euclidean space — 4.2. Two approaches to formality — 4.3. Configuration spaces of closed manifolds | | ## 1 The embedding calculus The motivation to construct the embedding calculus on manifolds is the computation of the homotopy type of the space $\operatorname{Emb}(M,N)$ of all embeddings $f:M\longrightarrow N$ of one manifold into another. Recall that f is an *immersion* if its derivative $T_pf:T_pM\longrightarrow T_qN$ is injective at each $p\in M$, and it is a (smooth) *embedding* if it is an immersion and a topological embedding. The computation of such space Emb(M,N) of embeddings is highly non-trivial: if $M = S^1$ and $N = S^3$, then the 0th homotopy group $\pi_0 \text{Emb}(S^1, S^3)$ consists of all isotopy classes of smooth knots, and determining and studying these already spans a whole area of mathematics, knot theory. The fact the previous example is slightly involved stems from the fact that the codimension of S^1 in S^3 is two: as soon as M has codimension at least three in N, then $\operatorname{Emb}(M,N)$ is a path connected space. For example, one can unknot any embedding $S^1 \longrightarrow S^4$. Nonetheless, higher homotopy and homology groups of $\operatorname{Emb}(M,N)$ are non-trivial, and give interesting and fine invariants of M and N that depend on their smooth structure, and not only on their homotopy type. The immediate problem one encounters when trying to compute with the functor Emb(-,N) is that it not continuous (in the categorical sense): if M is a union of submanifolds $V \cup U$ then Emb(M,N) is *not* equal to the pullback of the cospan $$\operatorname{Emb}(V,N) \longleftarrow \operatorname{Emb}(U \cap V,N) \longrightarrow \operatorname{Emb}(U,N).$$ (1) Concretely, if one is able to build embeddings $V \hookrightarrow N$ and $U \hookrightarrow N$ that coincide in $V \cap U$, it is not always possible to extend them to an embedding defined on $M = V \cup U$: the resulting map will be an immersion, but may fail to be injective on $U \cap V$. The idea of Goodwillie–Weiss calculus is to *approximate* the functor $F: M \longmapsto \operatorname{Emb}(M,N)$ by a tower of functors $$\cdots \longrightarrow F_4 \longrightarrow F_3 \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0$$ (2) under F that are, in a precise sense, polynomial functors. As a first step, one can consider the space of *immersions* $M \longrightarrow N$, which is polynomial of order one or, what is the same, linear, in the sense that Imm(M,N) is the limit of the span $$\operatorname{Imm}(V,N) \longleftarrow \operatorname{Imm}(U \cap V,N) \longrightarrow \operatorname{Imm}(U,N). \tag{3}$$ To define what it means for a functor to be "of order at most k" for some $k \in \mathbb{N}$ requires a bit more care, an involves the combinatorics of cubical posets. We point the reader to [23] for details. The cornerstone of the Goodwillie–Weiss calculus is the following result: **Theorem 1.1** Let F(V) = Emb(V, N) and suppose that M has codimension at least three in N. There exists a tower of functors over F as in (2) such that the map $$F(M) \longrightarrow \operatorname{holim}_k F_k(M)$$ (4) restricts to a homotopy equivalence of the base point components. Moreover, for each $k \in \mathbb{N}$ the homotopy type of the space $F_k(M)$ can be computed using a truncated mapping space as in Theorem 3.1, but where we only allow for "configurations of at most k points". We will in fact take a slightly different approach, and use little disks operads and configuration spaces of points to obtain a description of the homotopy type of $\operatorname{Emb}(M, N)$. Viva Talbot 2021 3 ### **2** Configuration spaces of points We now aim to approximate Emb(M,N) using *configurations spaces* [16]. For each $r \in \mathbb{N}$, we define the *ordered configuration space of r points in M* by $$Conf_M(r) = \{(x_1, \dots, x_r) \in M^r : x_i \neq x_j \text{ for all } i \neq j\}.$$ (5) They appeared initially in the study of braids and braid groups by Hurwitz [13], and later in the work of V. I. Arnol'd [1] and Fadell–Neuwirth [5]. Note that, more or less by definition, one has that the braid group B_r is equal to $\pi_1(\operatorname{Conf}_{D^2}(r))$. The sequence of spaces $(\operatorname{Conf}_M(r))_{r\geqslant 0}$ forms a *symmetric sequence* in spaces, that is, it is a sequence of spaces with corresponding actions of the symmetric groups, and we will write it Conf_M . They allow us to embed $\operatorname{Emb}(M,N)$ into $$\operatorname{Map}_{\Sigma}(\operatorname{Conf}_{M}, \operatorname{Conf}_{N}) = \prod_{r \geqslant 0} \operatorname{hom}_{\Sigma_{r}}(\operatorname{Conf}_{M}(r), \operatorname{Conf}_{N}(r))$$ (6) by assigning an embedding $f: M \longrightarrow N$ to the map Φ_f that assigns a configuration (x_1, \dots, x_r) in M to the configuration $(f(x_1), \dots, f(x_r))$. There are corresponding constructions for unframed manifolds. The maps Φ_f coming from embeddings $f: M \longrightarrow N$ enjoy some additional compatibility properties: - (1) *Forgetting points:* the map Φ_f commutes with the maps induced by the forgetful maps π_i : $Conf_M(r) \longrightarrow Conf_M(r-1)$ that forget the *i*th point in the domain. - (2) Continuity: if a configuration $\vec{x_0}$ is close to a configuration $\vec{x_1}$ in M, then their images under Φ_f will be close as configurations in N. We would like to relax these two conditions "up to homotopy". But what does this mean? ## 3 Operads and their modules One can use operads to formalize this. Let us consider a richer version of configuration spaces, that give us some more wiggle room, by replacing points with disks. For each $r \in \mathbb{N}$, define $$D_m(r) = \operatorname{Emb}_{\square}(D^m \sqcup \dots \sqcup D^m, D^m) \tag{7}$$ the space of rectilinear $^{\perp}$ embeddings of r disjoint m-disks in another m-disk. Similarly, define $$D_M(r) = \operatorname{Emb}_{\square}(D^m \sqcup \dots \sqcup D^m, M) \tag{8}$$ and note that $Conf_M(r)$ and $D_M(r)$ are homotopy equivalent spaces. The upshot is that the symmetric sequence D_m forms a (topological) operad. Namely, it comes equipped with composition ¹We only allow for dilations and translations. maps $$D_m(k) \times D_m(r_1) \times \cdots D_m(r_k) \longrightarrow D_m(r_1 + \cdots r_k)$$ (9) that satisfy certain associativity and equivariance relations. More briefly, it forms a monoid in the monoidal category of symmetric sequences under the circle product $$(X \circ Y)(n) = \bigsqcup_{k \geqslant 0} X(k) \times_{S_k} Y[\lambda], \tag{10}$$ where $Y[\lambda]$ is the S_k -module obtained as the disjoint union of all permutations of $Y(\lambda_1) \times \cdots \times Y(\lambda_k)$ for λ a partition of n. With this at hand, what we want is an equivariant associative map $$D_m \circ D_m \longrightarrow D_m.$$ (11) Moreover, the sequence D_M is a right D_m -module, in the sense there is a map $D_M \circ D_m \longrightarrow D_m$ that is compatible with the operad structure of D_m . Since $n \ge m$, there is an inclusion of operads $D_m \longrightarrow D_n$, and in particular the right D_n -module D_N can be viewed as a right D_m -module, which we will do in what follows. For unframed manifolds —those with possibly non-trivial tangent bundle— one needs to look instead at *framed* configurations, where each point (or little disk) is decorated with a frame², and we will use the superscript fr to denote this. We now observe that an embedding $f: M \longrightarrow N$ produces for us a map $D_M^{\mathrm{fr}} \longrightarrow D_N^{\mathrm{fr}}$ that is not just a map of symmetric sequences, but in fact a map right D_m^{fr} -modules. In this way, it makes sense to form the mapping space $\mathrm{Map}_{D_m^{\mathrm{fr}}}(D_M^{\mathrm{fr}},D_N^{\mathrm{fr}})$ and we obtain a map $$\operatorname{Emb}(M,N) \longrightarrow \operatorname{Map}_{D_m^{\operatorname{fr}}}(D_M^{\operatorname{fr}}, D_N^{\operatorname{fr}}) \tag{12}$$ by virtue of the additional compatibility properties we observed before. With this at hand, we can state the following theorem: **Theorem 3.1** (Goodwillie–Weiss, Arone–Turchin, Turchin, Boavida–Weiss, Sinha, ...) *If M has codimension at least three in N, then the map above induces a homotopy equivalence* $$\operatorname{Emb}(M,N) \longrightarrow \mathbb{R}\operatorname{Map}_{D_{tr}^{fr}}(D_{M}^{fr},D_{N}^{fr}) \tag{13}$$ where the right hand side is the derived mapping space of D_m^{fr} -module maps $D_M^{\mathrm{fr}} \longrightarrow D_N^{\mathrm{fr}}$. It is useful to note that the derived mapping space describes the " F_{∞} term" in the Goodwillie–Weiss tower for Emb(M,N), and that one can use truncated versions of mapping spaces to describe the finite stages of the tower. The upshot of this result is that if we can understand the homotopy type of the configuration spaces as right modules over the little disk operad, then we can understand the homotopy type of the space of embeddings. However, there is a trade-off: we now need to determine the homotopy type ²That is, we pick an element of SO(n) and a configuration of disks to define an element in D_n^{fr} ³For details, the reader can consult the work of B. Fresse [7–9]. Viva Talbot 2021 5 of a very simple manifold into another —a disjoint union of points— but nonetheless the functor $M \mapsto \operatorname{Conf}_M(r)$ is not easy to compute. In particular, it is not homotopy invariant! For example, the point has empty higher configuration spaces, but the contractible space D^2 has $\operatorname{Conf}_{D^2}(2) \simeq S^1$. More generally, $\operatorname{Conf}_{D^m}(2)$ is homotopy equivalent to S^{m-1} , through the map $$(v,w) \longmapsto \frac{v-w}{|v-w|}.$$ (14) One may suspect that the problem above is that the manifold D^2 is not closed (compact), but Longoni–Salvatore [20] have proved that the lens spaces $L_{7,1}$ and $L_{7,2}$, which are homotopy equivalent, have non-homotopy equivalent configuration spaces. However, these are non-simply connected spaces, and the following is still an open question: **Question.** Is it true that two simply connected closed manifolds of the same homotopy type have homotopy equivalent configuration spaces? #### 3.1 Bonus: deloopings The little disks operads were initially introduced to study and identify when a space can be delooped. That is, given a space X, when is it weakly homotopy equivalent to a space of the form $$\Omega^{n}(Y) = \operatorname{Map}(D^{n}; S^{n-1}, Y; *)$$ (15) for some other space Y? Any loop space $X = \Omega Y$ is an H-space and, as such, the monoid $\pi_0(X)$ is in fact group like, in the sense it is a group under the induced product of X. Moreover, it is an algebra over the little n-disks operad: there are equivariant maps $D_n(k) \times X^k \longrightarrow X$ obtained by inserting maps $D^n \longrightarrow Y$ into a disk configuration to obtain a new map $D^n \longrightarrow Y$, which is associative in a precise sense.⁴ Conversely, one can consider such a D_n -algebra X which, in particular, comes equipped with a single homotopy class of operations $m: X^2 \longrightarrow X$ originating from $\pi_0(D_n(2))$, making $\pi_0(X)$ into an associative monoid. We say X is a *group-like* D_n -algebra if this monoid is in fact a group. With this at hand, we can state the following result, going back to work of Beck, Boardman-Vogt, May, Segal and Stasheff; see [2,21,26]. The following theorem, due to J. P. May, provides a useful recognition principle to determine when a space can be delooped. **Theorem 3.2** A space X is weakly equivalent to an nth loop space $\Omega^n(Y)$ if, and only if, it is a group-like D_n -algebra. ## 4 The homotopy type of configuration spaces Computing integral homotopy types of spaces and, in particular, of configuration spaces, is remarkably difficult. A useful simplification that still allows us to obtain significant information on ⁴Which one? the homotopy type of a space is to work rationally. Informally, one can think that we are throwing away the torsion of homotopy groups of a space. More precisely, a simply connected topological space X is *rational* if all of the abelian groups $\pi_n(X)$ for $n \ge 2$ are \mathbb{Q} -vector spaces. A map of spaces $f: X \longrightarrow Y$ is a *rationalization* if Y is a rational space and the induced map $\pi_*(X) \otimes \mathbb{Q} \longrightarrow \pi_*(Y)$ is an isomorphism. One can show such space Y is unique up to homotopy equivalence relative to X, and we write it $X_{\mathbb{Q}}$. We say f is a rational homotopy equivalence if the following equivalent conditions hold: - (1) The map $\pi_*(f) \otimes \mathbb{Q}$ is an isomorphism. - (2) The map $H_*(f,\mathbb{Q})$ is an isomorphism. - (3) The map $H^*(f,\mathbb{Q})$ is an isomorphism. We call the weak homotopy type of $X_{\mathbb{Q}}$ the *rational homotopy type of* X. For example, the odd sphere S^{2n+1} have the rational homotopy type of a $K(2n+1,\mathbb{Q})$, while the even sphere have a slightly (but still simple) rational homotopy type. In this sense, doing homotopy theory over \mathbb{Q} is much simpler, at the cost of losing some information (for example, torsion, Steenrod operations, among others). The following theorem is one of the cornerstones of rational homotopy theory, along with the seminal work of D. Quillen [25]: **Theorem 4.1** (Sullivan) There is a Quillen adjunction⁵ $$\Omega^*(-): \mathsf{Top}^{\geqslant 1} \Longrightarrow \mathsf{CDGA}^{\geqslant 1}: \langle - \rangle \tag{16}$$ between the category of simply connected⁶ topological spaces of finite type up to rational equivalences and simply connected commutative dg algebras of finite type up to quasi-isomorphism. \Box The functor $\Omega^*(X)$ is analogous to the de Rham functor of forms, but instead consists of 'piecewise linear polynomial forms' on X, while the functor $\langle A \rangle$ is a 'geometric realization' functor. The upshot of this theorem is that the determination of the rational homotopy type of a space X is a purely algebraic task, and can be done by producing a cdga model of the (non-commutative) dga of cochains $C^*(X)$. For example, for each $n \ge 1$ the free commutative algebra $(S(x_{2n+1}), 0)$ on a single generator of degree 2n+1 is a model for the rational homotopy type of the odd sphere S^{2n+1} , while the commutative algebra $(S(x_{2n}, y_{4n-1}), d)$ with $dy_{4n-1} = x_{2n}^2$ is a model for the rational homotopy type of the even sphere S^{2n} . The end goal of rational homotopy theory is reproducing such computation for more complicated spaces or, what is the same, solving the following problem: given a space X, determine a cdga $A^*(X)$ that is 'nice enough' and quasi-isomorphic to the cdga of PL-forms $\Omega^*(X)$. The model $A^*(X)$ will then give us information about the rational homotopy type of X. For example, if $A^*(X)$ is minimal, in the sense that $A^*(X) = (S^*(V), d)$ with $dV \subseteq S(V)^{\geqslant 2}$, then $V^* \cong \hom_{\mathbb{Q}}(\pi_*(X), \mathbb{Q})$. Back to operads and modules. With this at hand, our goal is to find a model for $\Omega^*(D_m)$ and $\Omega^*(D_M)$, taking into account that the former is (almost) a cooperad —the functor Ω^* is contravariant— ⁵A special kind of adjunction, see [6] for details. ⁶There is a corresponding theory for non-simply connected spaces that requires nilpotence hypotheses on fundamental groups. Viva Talbot 2021 7 and latter is a comodule over it. Since Ω^* is a good functor, these models will allow us to compute the derived mapping space in (13), at least rationally, ultimately allowing us to pin down the rational homotopy type of Emb(M,N). #### 4.1 The case of Euclidean space Let us begin with the case $M = \mathbb{R}^m$, the building block for any other m-manifold. In this case, the computation of the cohomology groups of $\operatorname{Conf}_M(r)$ for all $r \ge 1$ are well understood and date back to work of V. I. Arnol'd and F. Cohen. For each r and each distinct $i, j \in [r]$, there is a map $$\operatorname{Conf}_{M}(r) \longrightarrow \operatorname{Conf}_{M}(2) \simeq S^{m-1}$$ (17) that produces for us a cohomology class of degree m-1 that we write ω_{ij} . Note that exchanging i and j induces the antipodal map on S^{m-1} , creating a $(-1)^m$ sign for this cohomology class. Coming from the top cohomology class of the sphere, $\omega_{ij}^2 = 0$ and, by looking at configurations of three points, one arrives at the following 'Jacobi-like identity' for three distinct $i, j, k \in [r]$: $$\omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0. \tag{18}$$ These is in fact a complete presentation of $H^*(D_m(r), \mathbb{Q})$: **Theorem 4.2** (Arnol'd, Cohen) The cohomology ring $H^*(D_m(r), \mathbb{Q})$ is isomorphic to the commutative algebra generated by ω_{ij} in degree m-1 for $i, j \in [r]$ subject to the following three sets of relations: R_1 : For all distinct i, j we have that $\omega_{ij} = (-1)^m \omega_{ji}$. R₂: For all distinct i, j we have that $\omega_{ij}^2 = 0$. R_3 : For all distinct i, j,k we have the Jacobi relation (18). In fact, Cohen computed the cooperadic decomposition maps of $H^*(D_m(r),\mathbb{Q})$, thus determining it completely as a Hopf cooperad: the operad $H_*(D_m,\mathbb{Q})$ is isomorphic to the operad of Poisson algebras with a commutative product of degree zero and a Lie bracket of degree $m-1^7$. In general, this computation would not be enough to determine the rational homotopy type of D_m . However, the following formality result says that indeed this cohomology ring is quasi-isomorphic to the algebra of forms $\Omega^*(D_m)$, and thus does capture the rational homotopy type of D_m : **Theorem 4.3** (Kontsevich, Lambrechts–Volić, Tamarkin,...) *The operad* D_m *is formal: there are quasi-isomorphisms of Hopf cooperads* $$H^*(D_m) \longleftarrow \cdots \longrightarrow \Omega^*(D_m).$$ (19) At the time, results on various flavour of formality of the operad D_m abound, see [4,10,24,27]. One of the two most famous consequences of formality of D_2 are the solution of the Deligne conjecture ⁷Integrally, the description of the algebras governed by the homology of configuration spaces is much more complicated. (for example, as was done by Tamarkin and explained in [12]) and the deformation quantization theorem of Kontsevich [18]. For us, formality has the consequence of allowing us to restrict to cohomology when computing our derived mapping space of interest. ### 4.2 Two approaches to formality KONTSEVICH'S APPROACH to obtaining the formality result in the last theorem can be summarized as follows. First, one can find 'arity wise' resolutions of the commutative algebras $H^*(D_m(r))$, which involve, for example, introducing a new generator ξ_{ijk} relaxing the Jacobi identity of (18) up to homotopy: $$d\xi_{ijk} = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij}. \tag{20}$$ If we interpret $\omega_{ij}\omega_{ik}$ as the directed graph (and interpret the other two terms similarly) then we may interpret ξ_{ijk} as the directed graph with differential the Jacobi relation, obtained by contracting one edge at a time. This idea gives rise to an object called a graph complex, filling in the 'dot' in (19). The map pointing to the left is obtained by assigning an integral to each labeled graph with some internal (black) vertices, and giving rise to an element in $\Omega^*(D_m)$. For details, the reader can refer to the book of Lambrechts and Volić [19]. It is worth pointing out that one can show the framed little disks operad D_2^{fr} is formal, this was done by Giansiracusa–Salvatore [11]. Later, S. Moriya [22] and Khoroshkin–Willwacher [15] showed that the framed little disks operad D_{2m+1}^{fr} is not formal for $m \ge 2$. TAMARKIN'S APPROACH, on the other hand, can be summarized as follows. There is an operad in groupoids called the *parenthesized braids operad*, which we write PaB⁸. The elements of PaB are parenthesized permutations (σ, π) of some finite set [r], and the morphisms between (σ, π) and (σ', π') consist of the elements of B_r that join an element in σ with the same element in σ' , as in Figure 1 below. Tamarkin's observation is that the geometrical realization of this operad in ⁸Following Tamarkin's original notation. Viva Talbot 2021 $$(1 (2 3))$$ $(1 2)$ $| | | |$ $(1 2) 3)$ $(2 1)$ Figure 1: The generators of PaB. groupoids is a little disks operad —what is now called an E_2 -operad— and that to show D_2 is formal, it suffices to show his operad of parenthesized braids is formal: any two pair of E_2 -operads are connected by a zig-zag of quasi-isomorphisms, so this suffices. It is well known that each topological space $D_2(r)$ is a $K(PB_r, 1)$ where PB_r is the pure braid group on r strands. For Tamarkin, a topological B_{∞} -operad is a topological operad X where each X(r) is a contractible space carrying a free action of the braid group B_r . The corresponding little disks operad is $E_2(X) = X/PB$, the arity-wise quotient of X(r) by PB_r^9 . Naturally, D_2 is the associated E_2 -operad of its classifying space. To show that PaB is formal, Tamarkin shows that every Drinfel'd associator produces a map of Hopf operads from $C_*(PaB)$ to the Chevalley–Eilenberg complex $\mathscr{C}_*(\mathfrak{t})$ of the Drinfel'd–Kohno Lie algebras [8, 17] $$\mathfrak{t} = (\mathfrak{t}_1, \mathfrak{t}_2, \mathfrak{t}_3, \dots) \tag{23}$$ which form an operad in Lie algebras. Since these are the Koszul dual Lie algebras to the commutative model of Arnol'd and Cohen, this produces for the requisite quasi-isomorphisms, and thus shows that every E_2 -operad is formal. Thus, Tamarkin's result can be stated as follows: **Theorem 4.4** (Tamarkin) *The E*₂-operad of parenthesized braids PaB is formal, and each Drinfel'd associator Φ produces a quasi-isomorphism of Hopf operads $$f_{\Phi}: C_*(\mathsf{PaB}) \longrightarrow \mathscr{C}_*(\mathfrak{t})$$ (24) where the right hand side is the Chevalley-Eilenberg construction of the Drinfel'd-Kohno Lie algebras, which receives a quasi-isomorphism $$H_*(D_2) \longrightarrow \mathscr{C}_*(\mathfrak{t}).$$ (25) It is worth to note that proving Koszulness of the commutative algebras $H^*(D_m(r))$ or, equivalently, of the Lie algebras of Drinfel'd–Kohno, is a highly not trivial task. Later, Ševera showed that the operad D_2^{fr} of *framed* little disks is formal. This operad is isomorphic to $D_2(r) \times (S_1)^r$ in each arity: each disk in a little disks configuration is now given a framing, that is, a point in its boundary is marked. The operad D_2^{fr} is *cyclic*, in the sense that the S_r action on $D_2^{\text{fr}}(r)$ extends to an S_{r+1} action (the output is now no longer 'special') along with a compatibility condition with the composition maps, and one can consider the problem of formality of D_2^{fr} as a cyclic operad. Inspired by Ševera's proof, we have the following result: ⁹Note that $B_r/PB_r = S_r$, so we get a symmetric operad. **Theorem 4.5** (Campos–Idrissi–Willwacher) *The cyclic operad* D_2^{fr} *is formal.* #### 4.3 Configuration spaces of closed manifolds Let us fix a closed manifold M, and consider the problem of determining the homotopy type of $\operatorname{Conf}_M(r)$ for a fixed r. If we expect it possible to obtain the homotopy type of $\operatorname{Conf}_M(r)$ from that of M, it makes sense to consider a mode A of the space $\Omega^*(M)$ of PL-forms on M, and attempt to build a model of $\operatorname{Conf}_M(r)$ out of A. One can in fact do this over the reals. Let us define $G_A(r)$ to be the cdga obtained from $A^{\otimes r}$ —or, what is the same, a model of M^r — by adding generators ω_{ij} for distinct $i, j \in [r]$ that satisfy the three sets of Arnol'd relations, along with the two additional sets of relations: - S_1 : (Symmetry) For each $i, j \in [r]$ and each $x \in A$ we have that $x_i \omega_{ij} = x_k \omega_{ij}$, where x_i corresponds to the copy of $x \in A$ in the *i*th factor of $A^{\otimes r}$. - S_2 : (Killing the diagonals) For each $i, j \in [r]$ we have that $d\omega_{ij} = [\Delta_{ij}]$, the class of the thick diagonal in M^r . We call $G_A(r)$ the Lambrechts–Stanley model of $Conf_M(r)$, as it was conjectured by these authors that A(r) does provide us with such a model. This conjecture was confirmed over the reals: **Theorem 4.6** (Idrissi [14]) For each closed manifold M of dimension at least four and each model A of M, the Lambrechts–Stanley cdga $G_A(r)$ is a model of $Conf_M(r)$ over \mathbb{R} . In particular, the real homotopy type of $Conf_M(r)$ depends only on the real homotopy type of M. In related work, Campos–Willwacher obtain a description of a model of $Conf_M(r)$ over \mathbb{R} , thus obtaining an independent proof of real homotopy invariance of configuration spaces for closed manifolds. Later, in joint work, Campos–Idrissi–Willwacher obtain a small model for the framed configuration space of a compact surface of genus g. Concretely, let us fix a compact surface Σ_g of genus g, and let us write $\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g$ for the canonical generators of $H^*(\Sigma_g)$. Let us write θ for the Thom class of Σ_g and, in addition to the relations we wrote before, let us add the relations that: - S_3 : (Thom class) For each $i \in [r]$ we have that $d\theta_i = (2-2g) \cdot \text{Vol}_i$, the volume form corresponding to the ith copy of Σ_g . - S_4 : (Volume form) For each $i, j \in [g]$ and each $k \in [r]$ we have that $\alpha_{i,k}\beta_{i,k} = \alpha_{j,k}\beta_{j,k}$, while $\alpha_{i,k}\beta_{j,k'} = 0$ for k = k' but $i \neq j$, and for i = j but $k \neq k'$. Remark that the relations that hold in A (the canonical model of Σ_g) are implicit throughout. Let us write this model $G_{\Sigma_g}^{\text{fr}}(r)$. With this at hand, we have the following result: **Theorem 4.7** (Campos–Idrissi–Willwacher [3]) The Hopf cooperad $G_{\Sigma_{\rho}}^{fr}$ is a real model of $D_{\Sigma_{\rho}}^{fr}$. Viva Talbot 2021 ### Acknowledgements The note-taker would like to thank the organizers of *Viva Talbot 2021* for their assistance and flexibility during the production of these notes, and to Najib Idrissi for pointing out useful references and giving feedback on preliminary versions of them. All inaccuracies, errors and omissions are my own. Any comment, correction or feedback is very much appreciated. ### References - [1] V. Arnold, The cohomology ring of the group of dyed braids 5 (1969), 227–231. - [2] J. M. Boardman and R. M. Vogt, *Homotopy invariant algebraic structures on topological spaces*, Springer Berlin Heidelberg, 1973. - [3] Ricardo Campos, Najib Idrissi, and Thomas Willwacher, Configuration spaces of surfaces, 2020. - [4] Pedro Boavida de Brito and Geoffroy Horel, On the formality of the little disks operad in positive characteristic, Journal of the London Mathematical Society (February 2021), https://doi.org/10.1112/jlms.12442. - [5] Edward Fadell and Lee Neuwirth, *Configuration spaces.*, Mathematica Scandinavica **10** (June 1962), 111, https://doi.org/10.7146/math.scand.a-10517. - [6] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, *Rational homotopy theory*, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR1802847 - [7] Benoit Fresse, *Modules over operads and functors*, Lecture Notes in Mathematics, vol. 1967, Springer-Verlag, Berlin, 2009. - [8] ______, Homotopy of operads and Grothendieck-Teichmüller groups. Part 1, Mathematical Surveys and Monographs, vol. 217, American Mathematical Society, Providence, RI, 2017. The algebraic theory and its topological background. MR3643404 - [9] ______, Homotopy of operads and Grothendieck-Teichmüller groups. Part 2, Mathematical Surveys and Monographs, vol. 217, American Mathematical Society, Providence, RI, 2017. The applications of (rational) homotopy theory methods. MR3616816 - [10] Benoit Fresse and Thomas Willwacher, *The intrinsic formality of* e_n -operads, 2018. - [11] Jeffrey Giansiracusa and Paolo Salvatore, Formality of the framed little 2-discs operad and semidirect products, 2010. - [12] V. Hinich, *Tamarkin's proof of Kontsevich formality theorem*, Forum Math. **15** (2003), no. 4, 591–614, https://doi.org/10.1515/form.2003.032. MR1978336 - [13] A. Hurwitz, *Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten*, Mathematische Annalen **39** (March 1891), no. 1, 1–60, https://doi.org/10.1007/bf01199469. - [14] Najib Idrissi, *The Lambrechts–Stanley model of configuration spaces*, Inventiones mathematicae **216** (December 2018), no. 1, 1–68, https://doi.org/10.1007/s00222-018-0842-9. - [15] Anton Khoroshkin and Thomas Willwacher, Real models for the framed little n-disks operads, 2017. - [16] Ben Knudsen, Configuration spaces in algebraic topology, 2018. - [17] Toshitake Kohao, *Série de Poincaré-Koszul associée aux groupes de tresses pures*, Inventiones Mathematicae **82** (February 1985), no. 1, 57–75, https://doi.org/10.1007/bf01394779. - [18] Maxim Kontsevich, *Deformation quantization of Poisson manifolds* **66** (2003), no. 3, 157–216 pp., available at q-alg/9709040. MR2062626 - [19] Pascal Lambrechts and Ismar Volić, *Formality of the little N-disks operad*, Memoirs of the American Mathematical Society, vol. 230, American Mathematical Society, Providence, RI, 2014. The algebraic theory and its topological background. - [20] Riccardo Longoni and Paolo Salvatore, *Configuration spaces are not homotopy invariant*, Topology **44** (2005), no. 2, 375–380. MR2114713 - [21] J. P. May, The geometry of iterated loop spaces, Springer Berlin Heidelberg, 1972. - [22] Syunji Moriya, *Non-formality of the odd dimensional framed little balls operads*, International Mathematics Research Notices **2019** (July 2017), no. 2, 625–639, https://doi.org/10.1093/imrn/rnx144. - [23] Brian A. Munson, Introduction to the manifold calculus of Goodwillie-Weiss, 2010. - [24] Dan Petersen, Minimal models, gt-action and formality of the little disk operad, 2013. - [25] Daniel Quillen, *Rational homotopy theory*, The Annals of Mathematics **90** (September 1969), no. 2, 205, https://doi.org/10.2307/1970725. - [26] James Dillon Stasheff, *Homotopy associativity of H-spaces I.*, Transactions of the American Mathematical Society **108** (August 1963), no. 2, 275, https://doi.org/10.2307/1993608. - [27] Dmitry E. Tamarkin, Formality of chain operad of little discs 66 (2003), no. 1-2, 65-72. MR2064592 22 Inselstrasse, Leipzig, Germany E-mail address: tamaroff@mis.mpg.de