
Little disks operads and configuration spaces
Talk by Najib Idrissi

Notes by Pedro Tamaroff

Speaker’s abstract. Operads are objects that govern categories of algebras. Initially introduced
in the sixties to study iterated loop spaces, they have proved useful in several areas of mathemat-
ics. In most of these applications, the little disks operads play a central role. In the first part of this
talk, we will focus on one of the applications studied in the 2015 Talbot Workshop, Goodwillie–
Weiss embedding calculus, which will serve as an “excuse” to introduce operads. In the second
part of this talk, I will set out some of the recent developments regarding the links between the
little disks operads and the real homotopy types of configuration spaces of manifolds. (Second
part based on joint works with Ricardo Campos, Julien Ducoulombier, Pascal Lambrechts, and
Thomas Willwacher.)
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1 The embedding calculus

The motivation to construct the embedding calculus on manifolds is the computation of the homo-
topy type of the space Emb(M,N) of all embeddings f : M −! N of one manifold into another.
Recall that f is an immersion if its derivative Tp f : TpM −! TqN is injective at each p ∈M, and it
is a (smooth) embedding if it is an immersion and a topological embedding.

The computation of such space Emb(M,N) of embeddings is highly non-trivial: if M = S1 and
N = S3, then the 0th homotopy group π0 Emb(S1,S3) consists of all isotopy classes of smooth
knots, and determining and studying these already spans a whole area of mathematics, knot theory.
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2 Little disks operads and configuration spaces

The fact the previous example is slightly involved stems from the fact that the codimension of S1

in S3 is two: as soon as M has codimension at least three in N, then Emb(M,N) is a path connected
space. For example, one can unknot any embedding S1 −! S4. Nonetheless, higher homotopy and
homology groups of Emb(M,N) are non-trivial, and give interesting and fine invariants of M and
N that depend on their smooth structure, and not only on their homotopy type.

The immediate problem one encounters when trying to compute with the functor Emb(−,N) is that
it not continuous (in the categorical sense): if M is a union of submanifolds V ∪U then Emb(M,N)

is not equal to the pullback of the cospan

Emb(V,N) Emb(U ∩V,N) Emb(U,N). (1)

Concretely, if one is able to build embeddings V ↪! N and U ↪! N that coincide in V ∩U , it is not
always possible to extend them to an embedding defined on M =V ∪U : the resulting map will be
an immersion, but may fail to be injective on U ∩V .

The idea of Goodwillie–Weiss calculus is to approximate the functor F : M 7−! Emb(M,N) by a
tower of functors

· · ·−! F4 −! F3 −! F2 −! F1 −! F0 (2)

under F that are, in a precise sense, polynomial functors. As a first step, one can consider the space
of immersions M −! N, which is polynomial of order one or, what is the same, linear, in the sense
that Imm(M,N) is the limit of the span

Imm(V,N) Imm(U ∩V,N) Imm(U,N). (3)

To define what it means for a functor to be “of order at most k” for some k ∈ N requires a bit more
care, an involves the combinatorics of cubical posets. We point the reader to [23] for details. The
cornerstone of the Goodwillie–Weiss calculus is the following result:

Theorem 1.1 Let F(V ) = Emb(V,N) and suppose that M has codimension at least three in N.
There exists a tower of functors over F as in (2) such that the map

F(M)−! holimk Fk(M) (4)

restricts to a homotopy equivalence of the base point components. Moreover, for each k ∈ N
the homotopy type of the space Fk(M) can be computed using a truncated mapping space as in
Theorem 3.1, but where we only allow for “configurations of at most k points”.

We will in fact take a slightly different approach, and use little disks operads and configuration
spaces of points to obtain a description of the homotopy type of Emb(M,N).
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2 Configuration spaces of points

We now aim to approximate Emb(M,N) using configurations spaces [16]. For each r ∈ N, we
define the ordered configuration space of r points in M by

ConfM(r) = {(x1, . . . ,xr) ∈Mr : xi 6= x j for all i 6= j}. (5)

They appeared initially in the study of braids and braid groups by Hurwitz [13], and later in the
work of V. I. Arnol’d [1] and Fadell–Neuwirth [5]. Note that, more or less by definition, one has
that the braid group Br is equal to π1(ConfD2(r)).

The sequence of spaces (ConfM(r))r>0 forms a symmetric sequence in spaces, that is, it is a se-
quence of spaces with corresponding actions of the symmetric groups, and we will write it ConfM .
They allow us to embed Emb(M,N) into

MapΣ(ConfM,ConfN) = ∏
r>0

homΣr(ConfM(r),ConfN(r)) (6)

by assigning an embedding f : M−!N to the map Φ f that assigns a configuration (x1, . . . ,xr) in M
to the configuration ( f (x1), . . . , f (xr)). There are corresponding constructions for unframed man-
ifolds. The maps Φ f coming from embeddings f : M −! N enjoy some additional compatibility
properties:

(1) Forgetting points: the map Φ f commutes with the maps induced by the forgetful maps πi :
ConfM(r)−! ConfM(r−1) that forget the ith point in the domain.

(2) Continuity: if a configuration ~x0 is close to a configuration ~x1 in M, then their images under
Φ f will be close as configurations in N.

We would like to relax these two conditions “up to homotopy”. But what does this mean?

3 Operads and their modules

One can use operads to formalize this. Let us consider a richer version of configuration spaces,
that give us some more wiggle room, by replacing points with disks. For each r ∈ N, define

Dm(r) = Emb�(Dmt·· ·tDm,Dm) (7)

the space of rectilinear1 embeddings of r disjoint m-disks in another m-disk. Similarly, define

DM(r) = Emb�(Dmt·· ·tDm,M) (8)

and note that ConfM(r) and DM(r) are homotopy equivalent spaces. The upshot is that the sym-
metric sequence Dm forms a (topological) operad. Namely, it comes equipped with composition

1We only allow for dilations and translations.



4 Little disks operads and configuration spaces

maps
Dm(k)×Dm(r1)×·· ·Dm(rk)−! Dm(r1 + · · ·rk) (9)

that satisfy certain associativity and equivariance relations. More briefly, it forms a monoid in the
monoidal category of symmetric sequences under the circle product

(X ◦Y )(n) =
⊔
k>0

X(k)×Sk Y [λ ], (10)

where Y [λ ] is the Sk-module obtained as the disjoint union of all permutations of Y (λ1)× ·· · ×
Y (λk) for λ a partition of n. With this at hand, what we want is an equivariant associative map

Dm ◦Dm −! Dm. (11)

Moreover, the sequence DM is a right Dm-module, in the sense there is a map DM ◦Dm −! Dm

that is compatible with the operad structure of Dm. Since n > m, there is an inclusion of operads
Dm −! Dn, and in particular the right Dn-module DN can be viewed as a right Dm-module, which
we will do in what follows. For unframed manifolds —those with possibly non-trivial tangent
bundle— one needs to look instead at framed configurations, where each point (or little disk) is
decorated with a frame2, and we will use the superscript fr to denote this.

We now observe that an embedding f : M −! N produces for us a map Dfr
M −!Dfr

N that is not just
a map of symmetric sequences, but in fact a map right Dfr

m-modules. In this way, it makes sense to
form the mapping space MapDfr

m
(Dfr

M,Dfr
N) and we obtain a map

Emb(M,N)−!MapDfr
m
(Dfr

M,Dfr
N) (12)

by virtue of the additional compatibility properties we observed before. With this at hand, we can
state the following theorem:

Theorem 3.1 (Goodwillie–Weiss, Arone–Turchin, Turchin, Boavida–Weiss, Sinha, ...) If M has
codimension at least three in N, then the map above induces a homotopy equivalence

Emb(M,N)−! RMapDfr
m
(Dfr

M,Dfr
N) (13)

where the right hand side is the derived3 mapping space of Dfr
m-module maps Dfr

M −! Dfr
N .

It is useful to note that the derived mapping space describes the “F∞ term” in the Goodwillie–Weiss
tower for Emb(M,N), and that one can use truncated versions of mapping spaces to describe the
finite stages of the tower.

The upshot of this result is that if we can understand the homotopy type of the configuration spaces
as right modules over the little disk operad, then we can understand the homotopy type of the
space of embeddings. However, there is a trade-off: we now need to determine the homotopy type

2That is, we pick an element of SO(n) and a configuration of disks to define an element in Dfr
n

3For details, the reader can consult the work of B. Fresse [7–9].
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of a very simple manifold into another —a disjoint union of points— but nonetheless the functor
M 7−! ConfM(r) is not easy to compute. In particular, it is not homotopy invariant! For example,
the point has empty higher configuration spaces, but the contractible space D2 has ConfD2(2)' S1.
More generally, ConfDm(2) is homotopy equivalent to Sm−1, through the map

(v,w) 7−!
v−w
|v−w|

. (14)

One may suspect that the problem above is that the manifold D2 is not closed (compact), but
Longoni–Salvatore [20] have proved that the lens spaces L7,1 and L7,2, which are homotopy equi-
valent, have non-homotopy equivalent configuration spaces. However, these are non-simply con-
nected spaces, and the following is still an open question:

Question. Is it true that two simply connected closed manifolds of the same homotopy type have
homotopy equivalent configuration spaces?

3.1 Bonus: deloopings

The little disks operads were initially introduced to study and identify when a space can be de-
looped. That is, given a space X , when is it weakly homotopy equivalent to a space of the form

Ω
n(Y ) = Map(Dn;Sn−1,Y ;∗) (15)

for some other space Y ? Any loop space X = ΩY is an H-space and, as such, the monoid π0(X)

is in fact group like, in the sense it is a group under the induced product of X . Moreover, it is
an algebra over the little n-disks operad: there are equivariant maps Dn(k)×Xk −! X obtained
by inserting maps Dn −! Y into a disk configuration to obtain a new map Dn −! Y , which is
associative in a precise sense.4

Conversely, one can consider such a Dn-algebra X which, in particular, comes equipped with a
single homotopy class of operations m : X2 −! X originating from π0(Dn(2)), making π0(X) into
an associative monoid. We say X is a group-like Dn-algebra if this monoid is in fact a group.

With this at hand, we can state the following result, going back to work of Beck, Boardman-Vogt,
May, Segal and Stasheff; see [2,21,26]. The following theorem, due to J. P. May, provides a useful
recognition principle to determine when a space can be delooped.

Theorem 3.2 A space X is weakly equivalent to an nth loop space Ωn(Y ) if, and only if, it is a
group-like Dn-algebra.

4 The homotopy type of configuration spaces

Computing integral homotopy types of spaces and, in particular, of configuration spaces, is re-
markably difficult. A useful simplification that still allows us to obtain significant information on

4Which one?
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the homotopy type of a space is to work rationally. Informally, one can think that we are throwing
away the torsion of homotopy groups of a space.

More precisely, a simply connected topological space X is rational if all of the abelian groups
πn(X) for n > 2 are Q-vector spaces. A map of spaces f : X −! Y is a rationalization if Y is a
rational space and the induced map π∗(X)⊗Q −! π∗(Y ) is an isomorphism. One can show such
space Y is unique up to homotopy equivalence relative to X , and we write it XQ.

We say f is a rational homotopy equivalence if the following equivalent conditions hold:

(1) The map π∗( f )⊗Q is an isomorphism.
(2) The map H∗( f ,Q) is an isomorphism.
(3) The map H∗( f ,Q) is an isomorphism.

We call the weak homotopy type of XQ the rational homotopy type of X . For example, the odd
sphere S2n+1 have the rational homotopy type of a K(2n+ 1,Q), while the even sphere have a
slightly (but still simple) rational homotopy type. In this sense, doing homotopy theory over Q is
much simpler, at the cost of losing some information (for example, torsion, Steenrod operations,
among others). The following theorem is one of the cornerstones of rational homotopy theory,
along with the seminal work of D. Quillen [25]:

Theorem 4.1 (Sullivan) There is a Quillen adjunction5

Ω
∗(−) : Top>1 −! − CDGA>1 : 〈−〉 (16)

between the category of simply connected6 topological spaces of finite type up to rational equival-
ences and simply connected commutative dg algebras of finite type up to quasi-isomorphism.

The functor Ω∗(X) is analogous to the de Rham functor of forms, but instead consists of ‘piece-
wise linear polynomial forms’ on X , while the functor 〈A〉 is a ‘geometric realization’ functor. The
upshot of this theorem is that the determination of the rational homotopy type of a space X is a
purely algebraic task, and can be done by producing a cdga model of the (non-commutative) dga of
cochains C∗(X). For example, for each n> 1 the free commutative algebra (S(x2n+1),0) on a single
generator of degree 2n+1 is a model for the rational homotopy type of the odd sphere S2n+1, while
the commutative algebra (S(x2n,y4n−1),d) with dy4n−1 = x2

2n is a model for the rational homotopy
type of the even sphere S2n.

The end goal of rational homotopy theory is reproducing such computation for more complicated
spaces or, what is the same, solving the following problem: given a space X , determine a cdga
A∗(X) that is ‘nice enough’ and quasi-isomorphic to the cdga of PL-forms Ω∗(X). The model
A∗(X) will then give us information about the rational homotopy type of X . For example, if A∗(X)

is minimal, in the sense that A∗(X) = (S∗(V ),d) with dV ⊆ S(V )>2, then V ∗ ∼= homQ(π∗(X),Q).

Back to operads and modules. With this at hand, our goal is to find a model for Ω∗(Dm) and
Ω∗(DM), taking into account that the former is (almost) a cooperad —the functor Ω∗ is contravariant—

5A special kind of adjunction, see [6] for details.
6There is a corresponding theory for non-simply connected spaces that requires nilpotence hypotheses on funda-

mental groups.
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and latter is a comodule over it. Since Ω∗ is a good functor, these models will allow us to compute
the derived mapping space in (13), at least rationally, ultimately allowing us to pin down the ra-
tional homotopy type of Emb(M,N).

4.1 The case of Euclidean space

Let us begin with the case M = Rm, the building block for any other m-manifold. In this case,
the computation of the cohomology groups of ConfM(r) for all r > 1 are well understood and date
back to work of V. I. Arnol’d and F. Cohen. For each r and each distinct i, j ∈ [r], there is a map

ConfM(r)−! ConfM(2)' Sm−1 (17)

that produces for us a cohomology class of degree m−1 that we write ωi j. Note that exchanging i
and j induces the antipodal map on Sm−1, creating a (−1)m sign for this cohomology class. Coming
from the top cohomology class of the sphere, ω2

i j = 0 and, by looking at configurations of three
points, one arrives at the following ‘Jacobi-like identity’ for three distinct i, j,k ∈ [r]:

ωi jω jk +ω jkωki +ωkiωi j = 0. (18)

These is in fact a complete presentation of H∗(Dm(r),Q):

Theorem 4.2 (Arnol’d, Cohen) The cohomology ring H∗(Dm(r),Q) is isomorphic to the commut-
ative algebra generated by ωi j in degree m− 1 for i, j ∈ [r] subject to the following three sets of
relations:

R1: For all distinct i, j we have that ωi j = (−1)mω ji.
R2: For all distinct i, j we have that ω2

i j = 0.
R3: For all distinct i, j,k we have the Jacobi relation (18).

In fact, Cohen computed the cooperadic decomposition maps of H∗(Dm(r),Q), thus determining
it completely as a Hopf cooperad: the operad H∗(Dm,Q) is isomorphic to the operad of Poisson
algebras with a commutative product of degree zero and a Lie bracket of degree m−17. In general,
this computation would not be enough to determine the rational homotopy type of Dm. However,
the following formality result says that indeed this cohomology ring is quasi-isomorphic to the
algebra of forms Ω∗(Dm), and thus does capture the rational homotopy type of Dm:

Theorem 4.3 (Kontsevich, Lambrechts–Volić, Tamarkin,...) The operad Dm is formal: there are
quasi-isomorphisms of Hopf cooperads

H∗(Dm) − ·−!Ω
∗(Dm). (19)

At the time, results on various flavour of formality of the operad Dm abound, see [4,10,24,27]. One
of the two most famous consequences of formality of D2 are the solution of the Deligne conjecture

7Integrally, the description of the algebras governed by the homology of configuration spaces is much more com-
plicated.
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(for example, as was done by Tamarkin and explained in [12]) and the deformation quantization
theorem of Kontsevich [18]. For us, formality has the consequence of allowing us to restrict to
cohomology when computing our derived mapping space of interest.

4.2 Two approaches to formality

KONTSEVICH’S APPROACH to obtaining the formality result in the last theorem can be summar-
ized as follows. First, one can find ‘arity wise’ resolutions of the commutative algebras H∗(Dm(r)),
which involve, for example, introducing a new generator ξi jk relaxing the Jacobi identity of (18)
up to homotopy:

dξi jk = ωi jω jk +ω jkωki +ωkiωi j. (20)

If we interpret ωi jω jk as the directed graph (and interpret the other two terms similarly)

i

j

k
(21)

then we may interpret ξi jk as the directed graph

i

j

k
(22)

with differential the Jacobi relation, obtained by contracting one edge at a time. This idea gives
rise to an object called a graph complex, filling in the ‘dot’ in (19). The map pointing to the left
is obtained by assigning an integral to each labeled graph with some internal (black) vertices, and
giving rise to an element in Ω∗(Dm). For details, the reader can refer to the book of Lambrechts
and Volić [19].

It is worth pointing out that one can show the framed little disks operad Dfr
2 is formal, this was done

by Giansiracusa–Salvatore [11]. Later, S. Moriya [22] and Khoroshkin–Willwacher [15] showed
that the framed little disks operad Dfr

2m+1 is not formal for m> 2.

TAMARKIN’S APPROACH, on the other hand, can be summarized as follows. There is an operad
in groupoids called the parenthesized braids operad, which we write PaB8. The elements of PaB
are parenthesized permutations (σ ,π) of some finite set [r], and the morphisms between (σ ,π)

and (σ ′,π ′) consist of the elements of Br that join an element in σ with the same element in σ ′,
as in Figure 1 below. Tamarkin’s observation is that the geometrical realization of this operad in

8Following Tamarkin’s original notation.
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Figure 1: The generators of PaB.

groupoids is a little disks operad —what is now called an E2-operad— and that to show D2 is
formal, it suffices to show his operad of parenthesized braids is formal: any two pair of E2-operads
are connected by a zig-zag of quasi-isomorphisms, so this suffices.

It is well known that each topological space D2(r) is a K(PBr,1) where PBr is the pure braid group
on r strands. For Tamarkin, a topological B∞-operad is a topological operad X where each X(r)
is a contractible space carrying a free action of the braid group Br. The corresponding little disks
operad is E2(X) = X/PB, the arity-wise quotient of X(r) by PBr

9. Naturally, D2 is the associated
E2-operad of its classifying space.

To show that PaB is formal, Tamarkin shows that every Drinfel’d associator produces a map of
Hopf operads from C∗(PaB) to the Chevalley–Eilenberg complex C∗(t) of the Drinfel’d–Kohno
Lie algebras [8, 17]

t= (t1, t2, t3, . . .) (23)

which form an operad in Lie algebras. Since these are the Koszul dual Lie algebras to the commut-
ative model of Arnol’d and Cohen, this produces for the requisite quasi-isomorphisms, and thus
shows that every E2-operad is formal. Thus, Tamarkin’s result can be stated as follows:

Theorem 4.4 (Tamarkin) The E2-operad of parenthesized braids PaB is formal, and each Drinfel’d
associator Φ produces a quasi-isomorphism of Hopf operads

fΦ : C∗(PaB)−! C∗(t) (24)

where the right hand side is the Chevalley–Eilenberg construction of the Drinfel’d–Kohno Lie
algebras, which receives a quasi-isomorphism

H∗(D2)−! C∗(t). (25)

It is worth to note that proving Koszulness of the commutative algebras H∗(Dm(r)) or, equivalently,
of the Lie algebras of Drinfel’d–Kohno, is a highly not trivial task.

Later, S̆evera showed that the operad Dfr
2 of framed little disks is formal. This operad is isomorphic

to D2(r)× (S1)
r in each arity: each disk in a little disks configuration is now given a framing, that

is, a point in its boundary is marked. The operad Dfr
2 is cyclic, in the sense that the Sr action on

Dfr
2 (r) extends to an Sr+1 action (the output is now no longer ‘special’) along with a compatibility

condition with the composition maps, and one can consider the problem of formality of Dfr
2 as a

cyclic operad. Inspired by S̆evera’s proof, we have the following result:
9Note that Br/PBr = Sr, so we get a symmetric operad.
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Theorem 4.5 (Campos–Idrissi–Willwacher) The cyclic operad Dfr
2 is formal.

4.3 Configuration spaces of closed manifolds

Let us fix a closed manifold M, and consider the problem of determining the homotopy type of
ConfM(r) for a fixed r. If we expect it possible to obtain the homotopy type of ConfM(r) from that
of M, it makes sense to consider a mode A of the space Ω∗(M) of PL-forms on M, and attempt to
build a model of ConfM(r) out of A.

One can in fact do this over the reals. Let us define GA(r) to be the cdga obtained from A⊗r —or,
what is the same, a model of Mr— by adding generators ωi j for distinct i, j ∈ [r] that satisfy the
three sets of Arnol’d relations, along with the two additional sets of relations:

S1: (Symmetry) For each i, j∈ [r] and each x∈A we have that xiωi j = xkωi j, where xi corresponds
to the copy of x ∈ A in the ith factor of A⊗r.

S2: (Killing the diagonals) For each i, j ∈ [r] we have that dωi j = [∆i j], the class of the thick
diagonal in Mr.

We call GA(r) the Lambrechts–Stanley model of ConfM(r), as it was conjectured by these authors
that A(r) does provide us with such a model. This conjecture was confirmed over the reals:

Theorem 4.6 (Idrissi [14]) For each closed manifold M of dimension at least four and each model
A of M, the Lambrechts–Stanley cdga GA(r) is a model of ConfM(r) over R. In particular, the real
homotopy type of ConfM(r) depends only on the real homotopy type of M.

In related work, Campos–Willwacher obtain a description of a model of ConfM(r) over R, thus
obtaining an independent proof of real homotopy invariance of configuration spaces for closed
manifolds. Later, in joint work, Campos–Idrissi–Willwacher obtain a small model for the framed
configuration space of a compact surface of genus g.

Concretely, let us fix a compact surface Σg of genus g, and let us write α1, . . . ,αg,β1, . . . ,βg for the
canonical generators of H∗(Σg). Let us write θ for the Thom class of Σg and, in addition to the
relations we wrote before, let us add the relations that:

S3: (Thom class) For each i ∈ [r] we have that dθi = (2−2g) ·Voli, the volume form correspond-
ing to the ith copy of Σg.

S4: (Volume form) For each i, j ∈ [g] and each k ∈ [r] we have that αi,kβi,k = α j,kβ j,k, while
αi,kβ j,k′ = 0 for k = k′ but i 6= j, and for i = j but k 6= k′.

Remark that the relations that hold in A (the canonical model of Σg) are implicit throughout. Let
us write this model Gfr

Σg
(r). With this at hand, we have the following result:

Theorem 4.7 (Campos–Idrissi–Willwacher [3]) The Hopf cooperad Gfr
Σg

is a real model of Dfr
Σg

.
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